// A double pendulum simulator by Bruce Hill // Released under the MIT license, see LICENSE for details. #include #include #include #include #include #include typedef struct { double a, p; } pendulum_t; typedef struct { pendulum_t p1, p2; } state_t; static const double M1 = 1.0, M2 = 1.0, G = 9.80, L1 = .5, L2 = .5; const int color_ramp[] = {16,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246, 247,248,249,250,251,252,253,254,255,231,231,231,231,231}; static state_t get_derivative(state_t state) { double a1 = state.p1.a, a2 = state.p2.a, p1 = state.p1.p, p2 = state.p2.p; double da1, da2, dp1, dp2; da1 = (6/(M1*L1*L1)) * (2*p1 - 3*cos(a1-a2)*p2)/(16-9*cos(a1-a2)*cos(a1-a2)); da2 = (6/(M2*L2*L2)) * (8*p2 - 3*cos(a1-a2)*p1)/(16-9*cos(a1-a2)*cos(a1-a2)); dp1 = -.5 * M1*L1*L1 * (da1*da2*sin(a1-a2) + 3*G/L1*sin(a1)); dp2 = -.5 * M2*L2*L2 * (-da1*da2*sin(a1-a2) + G/L1*sin(a2)); state_t derivative = {{da1, dp1}, {da2, dp2}}; return derivative; } static state_t step(state_t state, state_t derivative, double dt) { state_t next = { {state.p1.a+dt*derivative.p1.a, state.p1.p+dt*derivative.p1.p}, {state.p2.a+dt*derivative.p2.a, state.p2.p+dt*derivative.p2.p} }; return next; } static inline void draw_pix(double x, double y, int W, int H, double *prev) { double b = sqrt(2*((x-floor(x+.5))*(x-floor(x+.5)) + (y-floor(y+.5))*(y-floor(y+.5)))); int ix = (int)x, iy = (int)y; if (b > prev[iy*W+ix] && b > .1) { prev[iy*W+ix] = b; int color = color_ramp[(int)(sizeof(color_ramp)/sizeof(int) * b)]; tb_change_cell(ix, iy, ' ', 0, color); } } static void draw(state_t state) { // TODO: properly walk along cells int W = tb_width(), H = tb_height(); double *brightness = calloc(W*H, sizeof(double)); double len = W/2 > H ? H/2 : (W/2)/2; double x = W/2, y = H/2; double step = 0.25; for (double p = 0; p <= len*L1; p += step) { draw_pix(x, y, W, H, brightness); draw_pix(x+1.0, y, W, H, brightness); x += step*cos(state.p1.a + M_PI/2)*2; y += step*sin(state.p1.a + M_PI/2); } for (double p = 0; p <= len*L2; p += step) { draw_pix(x, y, W, H, brightness); draw_pix(x+1.0, y, W, H, brightness); x += step*cos(state.p2.a + M_PI/2)*2; y += step*sin(state.p2.a + M_PI/2); } free(brightness); } int main(int argc, char **argv) { int ret = tb_init(); if (ret) { fprintf(stderr, "tb_init() failed with error code %d\n", ret); return 1; } tb_select_input_mode(TB_INPUT_MOUSE); tb_select_output_mode(TB_OUTPUT_256); state_t state; randomize: state.p1.a = M_PI*7/8 + M_PI/4*(double)rand()/RAND_MAX; state.p2.a = M_PI*7/8 + M_PI/4*(double)rand()/RAND_MAX; state.p1.p = 0; state.p2.p = 0; while (1) { tb_clear(); const int steps = 5; double dt = (1./60.) / (double)steps; for (int i = 0; i < steps; i++) { // RK4 integration state_t k1 = get_derivative(state); state_t k2 = get_derivative(step(state, k1, dt/2.)); state_t k3 = get_derivative(step(state, k2, dt/2.)); state_t k4 = get_derivative(step(state, k3, dt)); state.p1.a += dt/6.*(k1.p1.a + 2.*k2.p1.a + 2.*k3.p1.a + k4.p1.a); state.p2.a += dt/6.*(k1.p2.a + 2.*k2.p2.a + 2.*k3.p2.a + k4.p2.a); state.p1.p += dt/6.*(k1.p1.p + 2.*k2.p1.p + 2.*k3.p1.p + k4.p1.p); state.p2.p += dt/6.*(k1.p2.p + 2.*k2.p2.p + 2.*k3.p2.p + k4.p2.p); } draw(state); tb_present(); usleep(60000); struct tb_event ev; while (tb_peek_event(&ev, 0)) { switch (ev.type) { case TB_EVENT_KEY: if (ev.key == TB_KEY_ESC && tb_peek_event(&ev, 50) == 0) goto done; else if (ev.ch == 'q') goto done; else if (ev.ch == 'r') goto randomize; break; } } } done: tb_shutdown(); return 0; }