// // pattern.c - Compile strings into BP pattern objects that can be matched against. // #include #include #include #include #include #include #include #include #include "pattern.h" #include "utils.h" #include "utf8.h" #define Pattern(_tag, _start, _end, _min, _max, ...) allocate_pat((bp_pat_t){.type=_tag, .start=_start, .end=_end, \ .min_matchlen=_min, .max_matchlen=_max, .__tagged._tag={__VA_ARGS__}}) #define UNBOUNDED(pat) ((pat)->max_matchlen == -1) static bp_pat_t *allocated_pats = NULL; __attribute__((nonnull)) static bp_pat_t *bp_pattern_nl(const char *str, const char *end, bool allow_nl); __attribute__((nonnull)) static bp_pat_t *bp_simplepattern(const char *str, const char *end); // For error-handling purposes, use setjmp/longjmp to break out of deeply // recursive function calls when a parse error occurs. bool is_in_try_catch = false; static jmp_buf err_jmp; static maybe_pat_t parse_error = {.success = false}; #define __TRY_PATTERN__ bool was_in_try_catch = is_in_try_catch; \ if (!is_in_try_catch) { is_in_try_catch = true; if (setjmp(err_jmp)) return parse_error; } #define __END_TRY_PATTERN__ if (!was_in_try_catch) is_in_try_catch = false; static inline void parse_err(const char *start, const char *end, const char *msg) { if (!is_in_try_catch) { fprintf(stderr, "Parse error: %s\n%.*s\n", msg, (int)(end-start), start); exit(1); } parse_error.value.error.start = start; parse_error.value.error.end = end; parse_error.value.error.msg = msg; longjmp(err_jmp, 1); } // // Allocate a new pattern for this file (ensuring it will be automatically // freed when the file is freed) // public bp_pat_t *allocate_pat(bp_pat_t pat) { static size_t next_pat_id = 1; bp_pat_t *allocated = new(bp_pat_t); *allocated = pat; allocated->home = &allocated_pats; allocated->next = allocated_pats; allocated->id = next_pat_id++; if (allocated_pats) allocated_pats->home = &allocated->next; allocated_pats = allocated; return allocated; } // // Helper function to initialize a range object. // __attribute__((nonnull(1,2,5))) static bp_pat_t *new_range(const char *start, const char *end, size_t min, ssize_t max, bp_pat_t *repeating, bp_pat_t *sep) { size_t minlen = min*repeating->min_matchlen + (min > 0 ? min-1 : 0)*(sep ? sep->min_matchlen : 0); ssize_t maxlen = (max == -1 || UNBOUNDED(repeating) || (max != 0 && max != 1 && sep && UNBOUNDED(sep))) ? (ssize_t)-1 : max*repeating->max_matchlen + (ssize_t)(max > 0 ? min-1 : 0)*(ssize_t)(sep ? sep->min_matchlen : 0); return Pattern(BP_REPEAT, start, end, minlen, maxlen, .min=min, .max=max, .repeat_pat=repeating, .sep=sep); } // // Take a pattern and expand it into a chain of patterns if it's followed by // any patterns (e.g. "`x `y"), otherwise return the original input. // __attribute__((nonnull)) static bp_pat_t *expand_chain(bp_pat_t *first, const char *end, bool allow_nl) { const char *str = after_spaces(first->end, allow_nl, end); bp_pat_t *second = bp_simplepattern(str, end); if (second == NULL) return first; second = expand_chain(second, end, allow_nl); return chain_together(first, second); } // // Match trailing => replacements (with optional pattern beforehand) // __attribute__((nonnull)) static bp_pat_t *expand_replacements(bp_pat_t *replace_pat, const char *end, bool allow_nl) { const char *str = replace_pat->end; while (matchstr(&str, "=>", allow_nl, end)) { const char *repstr; size_t replen; if (matchchar(&str, '"', allow_nl, end) || matchchar(&str, '\'', allow_nl, end) || matchchar(&str, '}', allow_nl, end) || matchchar(&str, '\002', allow_nl, end)) { char closequote = str[-1] == '}' ? '{' : (str[-1] == '\002' ? '\003' : str[-1]); repstr = str; for (; str < end && *str != closequote; str = next_char(str, end)) { if (*str == '\\') { if (!str[1] || str[1] == '\n') parse_err(str, str+1, "There should be an escape sequence after this backslash."); str = next_char(str, end); } } replen = (size_t)(str-repstr); (void)matchchar(&str, closequote, true, end); } else { repstr = ""; replen = 0; } replace_pat = Pattern(BP_REPLACE, replace_pat->start, str, replace_pat->min_matchlen, replace_pat->max_matchlen, .pat=replace_pat, .text=repstr, .len=replen); } return replace_pat; } // // Take a pattern and parse any "=>" replacements and then expand it into a // chain of choices if it's followed by any "/"-separated patterns (e.g. // "`x/`y"), otherwise return the original input. // __attribute__((nonnull)) static bp_pat_t *expand_choices(bp_pat_t *first, const char *end, bool allow_nl) { first = expand_chain(first, end, allow_nl); first = expand_replacements(first, end, allow_nl); const char *str = first->end; if (!matchchar(&str, '/', allow_nl, end)) return first; str = after_spaces(str, allow_nl, end); bp_pat_t *second = bp_simplepattern(str, end); if (second) str = second->end; if (matchstr(&str, "=>", allow_nl, end)) second = expand_replacements(second ? second : Pattern(BP_STRING, str-2, str-2, 0, 0), end, allow_nl); if (!second) parse_err(str, str, "There should be a pattern here after a '/'"); second = expand_choices(second, end, allow_nl); return either_pat(first, second); } // // Given two patterns, return a new pattern for the first pattern followed by // the second. If either pattern is NULL, return the other. // public bp_pat_t *chain_together(bp_pat_t *first, bp_pat_t *second) { if (first == NULL) return second; if (second == NULL) return first; if (first->type == BP_STRING && first->max_matchlen == 0) return second; if (second->type == BP_STRING && second->max_matchlen == 0) return first; if (first->type == BP_DEFINITIONS && second->type == BP_DEFINITIONS) { return Pattern(BP_CHAIN, first->start, second->end, second->min_matchlen, second->max_matchlen, .first=first, .second=second); } size_t minlen = first->min_matchlen + second->min_matchlen; ssize_t maxlen = (UNBOUNDED(first) || UNBOUNDED(second)) ? (ssize_t)-1 : first->max_matchlen + second->max_matchlen; return Pattern(BP_CHAIN, first->start, second->end, minlen, maxlen, .first=first, .second=second); } // // Given two patterns, return a new pattern for matching either the first // pattern or the second. If either pattern is NULL, return the other. // public bp_pat_t *either_pat(bp_pat_t *first, bp_pat_t *second) { if (first == NULL) return second; if (second == NULL) return first; size_t minlen = first->min_matchlen < second->min_matchlen ? first->min_matchlen : second->min_matchlen; ssize_t maxlen = (UNBOUNDED(first) || UNBOUNDED(second)) ? (ssize_t)-1 : (first->max_matchlen > second->max_matchlen ? first->max_matchlen : second->max_matchlen); return Pattern(BP_OTHERWISE, first->start, second->end, minlen, maxlen, .first=first, .second=second); } // // Parse a definition // __attribute__((nonnull)) static bp_pat_t *_bp_definition(const char *start, const char *end) { if (start >= end || !(isalpha(*start) || *start == '_')) return NULL; const char *str = after_name(start, end); size_t namelen = (size_t)(str - start); if (!matchchar(&str, ':', false, end)) return NULL; bool is_tagged = str < end && *str == ':' && matchchar(&str, ':', false, end); bp_pat_t *def = bp_pattern_nl(str, end, false); if (!def) parse_err(str, end, "Could not parse this definition."); str = def->end; (void)matchchar(&str, ';', false, end); // Optional semicolon if (is_tagged) { // `id:: foo` means define a rule named `id` that gives captures an `id` tag def = Pattern(BP_TAGGED, def->start, def->end, def->min_matchlen, def->max_matchlen, .pat=def, .name=start, .namelen=namelen); } bp_pat_t *next_def = _bp_definition(after_spaces(str, true, end), end); return Pattern(BP_DEFINITIONS, start, next_def ? next_def->end : str, 0, -1, .name=start, .namelen=namelen, .meaning=def, .next_def=next_def); } // // Compile a string of BP code into a BP pattern object. // __attribute__((nonnull)) static bp_pat_t *_bp_simplepattern(const char *str, const char *end, bool inside_stringpattern) { str = after_spaces(str, false, end); if (!*str) return NULL; const char *start = str; char c = *str; str = next_char(str, end); switch (c) { // Any char (dot) case '.': { // As a special case, 3+ dots is parsed as a series of "any char" followed by a single "upto" // In other words, `...foo` parses as `(.)(..foo)` instead of `(..(.)) (foo)` // This is so that `...` can mean "at least one character upto" instead of "upto any character", // which is tautologically the same as matching any single character. if (*str == '.' && (str+1 >= end || str[1] != '.')) { // ".." str = next_char(str, end); enum bp_pattype_e type = BP_UPTO; bp_pat_t *extra_arg = NULL; if (matchchar(&str, '%', false, end)) { extra_arg = bp_simplepattern(str, end); if (extra_arg) str = extra_arg->end; else parse_err(str, str, "There should be a pattern to skip here after the '%'"); } else if (matchchar(&str, '=', false, end)) { extra_arg = bp_simplepattern(str, end); if (extra_arg) str = extra_arg->end; else parse_err(str, str, "There should be a pattern here after the '='"); type = BP_UPTO_STRICT; } bp_pat_t *target; if (inside_stringpattern) { target = NULL; } else { target = bp_simplepattern(str, end); // Bugfix: `echo "foo@" | bp '{..}{"@"}'` should be parsed as `.."@"` // not '(.."") "@"' while (target && target->type == BP_STRING && target->max_matchlen == 0) target = bp_simplepattern(target->end, end); } return type == BP_UPTO ? Pattern(BP_UPTO, start, str, 0, -1, .target=target, .skip=extra_arg) : Pattern(BP_UPTO_STRICT, start, str, 0, -1, .target=target, .skip=extra_arg); } else { return Pattern(BP_ANYCHAR, start, str, 1, UTF8_MAXCHARLEN); } } // Char literals case '`': { bp_pat_t *all = NULL; do { // Comma-separated items: if (str >= end || !*str || *str == '\n') parse_err(str, str, "There should be a character here after the '`'"); const char *c1_loc = str; str = next_char(c1_loc, end); if (*str == '-') { // Range const char *c2_loc = ++str; if (next_char(c1_loc, end) > c1_loc+1 || next_char(c2_loc, end) > c2_loc+1) parse_err(start, next_char(c2_loc, end), "Sorry, UTF-8 character ranges are not yet supported."); char c1 = *c1_loc, c2 = *c2_loc; if (!c2 || c2 == '\n') parse_err(str, str, "There should be a character here to complete the character range."); if (c1 > c2) { // Swap order char tmp = c1; c1 = c2; c2 = tmp; } str = next_char(c2_loc, end); bp_pat_t *pat = Pattern(BP_RANGE, start == c1_loc - 1 ? start : c1_loc, str, 1, 1, .low=c1, .high=c2); all = either_pat(all, pat); } else { size_t len = (size_t)(str - c1_loc); bp_pat_t *pat = Pattern(BP_STRING, start, str, len, (ssize_t)len, .string=strndup(c1_loc, len)); all = either_pat(all, pat); } } while (*str++ == ','); return all; } // Escapes case '\\': { if (!*str || *str == '\n') parse_err(str, str, "There should be an escape sequence here after this backslash."); bp_pat_t *all = NULL; do { // Comma-separated items: const char *itemstart = str-1; if (*str == 'N') { // \N (nodent) all = either_pat(all, Pattern(BP_NODENT, itemstart, ++str, 1, -1)); continue; } else if (*str == 'C') { // \C (current indent) all = either_pat(all, Pattern(BP_CURDENT, itemstart, ++str, 1, -1)); continue; } else if (*str == 'i') { // \i (identifier char) all = either_pat(all, Pattern(BP_ID_CONTINUE, itemstart, ++str, 1, -1)); continue; } else if (*str == 'I') { // \I (identifier char, not including numbers) all = either_pat(all, Pattern(BP_ID_START, itemstart, ++str, 1, -1)); continue; } else if (*str == 'b') { // \b word boundary all = either_pat(all, Pattern(BP_WORD_BOUNDARY, itemstart, ++str, 0, 0)); continue; } const char *opstart = str; unsigned char e_low = (unsigned char)unescapechar(str, &str, end); if (str == opstart) parse_err(start, str+1, "This isn't a valid escape sequence."); unsigned char e_high = e_low; if (*str == '-') { // Escape range (e.g. \x00-\xFF) ++str; if (next_char(str, end) != str+1) parse_err(start, next_char(str, end), "Sorry, UTF8 escape sequences are not supported in ranges."); const char *seqstart = str; e_high = (unsigned char)unescapechar(str, &str, end); if (str == seqstart) parse_err(seqstart, str+1, "This value isn't a valid escape sequence"); if (e_high < e_low) parse_err(start, str, "Escape ranges should be low-to-high, but this is high-to-low."); } bp_pat_t *esc = Pattern(BP_RANGE, start, str, 1, 1, .low=e_low, .high=e_high); all = either_pat(all, esc); } while (*str == ',' && str++ < end); return all; } // Word boundary case '|': { return Pattern(BP_WORD_BOUNDARY, start, str, 0, 0); } // String literal case '"': case '\'': case '\002': case '}': { char endquote = c == '\002' ? '\003' : (c == '}' ? '{' : c); char *litstart = (char*)str; while (str < end && *str != endquote) str = next_char(str, end); size_t len = (size_t)(str - litstart); str = next_char(str, end); if (c == '}') ++start; // Don't include the "}" in the pattern source range return Pattern(BP_STRING, start, str, len, (ssize_t)len, .string=strndup(litstart, len)); } // Not case '!': { bp_pat_t *p = bp_simplepattern(str, end); if (!p) parse_err(str, str, "There should be a pattern after this '!'"); return Pattern(BP_NOT, start, p->end, 0, 0, .pat=p); } // Number of repetitions: (- / - / + / "") case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': { size_t min = 0; ssize_t max = -1; --str; long n1 = strtol(str, (char**)&str, 10); if (matchchar(&str, '-', false, end)) { str = after_spaces(str, false, end); const char *numstart = str; long n2 = strtol(str, (char**)&str, 10); if (str == numstart) min = 0, max = (ssize_t)n1; else min = (size_t)n1, max = (ssize_t)n2; } else if (matchchar(&str, '+', false, end)) { min = (size_t)n1, max = -1; } else { min = (size_t)n1, max = (ssize_t)n1; } bp_pat_t *repeating = bp_simplepattern(str, end); if (!repeating) parse_err(str, str, "There should be a pattern after this repetition count."); str = repeating->end; bp_pat_t *sep = NULL; if (matchchar(&str, '%', false, end)) { sep = bp_simplepattern(str, end); if (!sep) parse_err(str, str, "There should be a separator pattern after this '%%'"); str = sep->end; } else { str = repeating->end; } return new_range(start, str, min, max, repeating, sep); } // Lookbehind case '<': { bp_pat_t *behind = bp_simplepattern(str, end); if (!behind) parse_err(str, str, "There should be a pattern after this '<'"); return Pattern(BP_AFTER, start, behind->end, 0, 0, .pat=behind); } // Lookahead case '>': { bp_pat_t *ahead = bp_simplepattern(str, end); if (!ahead) parse_err(str, str, "There should be a pattern after this '>'"); return Pattern(BP_BEFORE, start, ahead->end, 0, 0, .pat=ahead); } // Parentheses case '(': { bp_pat_t *pat = bp_pattern_nl(str, end, true); if (!pat) parse_err(str, str, "There should be a valid pattern after this parenthesis."); str = pat->end; if (!matchchar(&str, ')', true, end)) parse_err(str, str, "Missing paren: )"); pat->start = start; pat->end = str; return pat; } // Square brackets case '[': { bp_pat_t *maybe = bp_pattern_nl(str, end, true); if (!maybe) parse_err(str, str, "There should be a valid pattern after this square bracket."); str = maybe->end; (void)matchchar(&str, ']', true, end); return new_range(start, str, 0, 1, maybe, NULL); } // Repeating case '*': case '+': { size_t min = (size_t)(c == '*' ? 0 : 1); bp_pat_t *repeating = bp_simplepattern(str, end); if (!repeating) parse_err(str, str, "There should be a valid pattern to repeat here"); str = repeating->end; bp_pat_t *sep = NULL; if (matchchar(&str, '%', false, end)) { sep = bp_simplepattern(str, end); if (!sep) parse_err(str, str, "There should be a separator pattern after the '%%' here."); str = sep->end; } return new_range(start, str, min, -1, repeating, sep); } // Capture case '@': { if (matchchar(&str, ':', false, end)) { // Tagged capture @:Foo=pat const char *name = str; str = after_name(name, end); if (str <= name) parse_err(start, str, "There should be an identifier after this '@:'"); size_t namelen = (size_t)(str - name); bp_pat_t *p = NULL; if (matchchar(&str, '=', false, end)) { p = bp_simplepattern(str, end); if (p) str = p->end; } return Pattern(BP_TAGGED, start, str, p ? p->min_matchlen : 0, p ? p->max_matchlen : 0, .pat=p, .name=name, .namelen=namelen); } const char *name = NULL; size_t namelen = 0; const char *a = after_name(str, end); const char *eq = a; bool backreffable = false; if (a > str && matchchar(&eq, ':', false, end)) { name = str; namelen = (size_t)(a-str); str = eq; backreffable = true; } else if (a > str && !matchstr(&eq, "=>", false, end) && matchchar(&eq, '=', false, end)) { name = str; namelen = (size_t)(a-str); str = eq; } bp_pat_t *pat = bp_simplepattern(str, end); if (!pat) parse_err(str, str, "There should be a valid pattern here to capture after the '@'"); return Pattern(BP_CAPTURE, start, pat->end, pat->min_matchlen, pat->max_matchlen, .pat = pat, .name = name, .namelen = namelen, .backreffable = backreffable); } // Start of file/line case '^': { if (*str == '^') return Pattern(BP_START_OF_FILE, start, ++str, 0, 0); return Pattern(BP_START_OF_LINE, start, str, 0, 0); } // End of file/line: case '$': { if (*str == '$') return Pattern(BP_END_OF_FILE, start, ++str, 0, 0); return Pattern(BP_END_OF_LINE, start, str, 0, 0); } default: { bp_pat_t *def = _bp_definition(start, end); if (def) return def; // Reference if (!isalpha(c) && c != '_') return NULL; str = after_name(start, end); size_t namelen = (size_t)(str - start); return Pattern(BP_REF, start, str, 0, -1, .name=start, .len=namelen); } } } // // Similar to bp_simplepattern, except that the pattern begins with an implicit // '}' open quote that can be closed with '{' // public maybe_pat_t bp_stringpattern(const char *str, const char *end) { __TRY_PATTERN__ if (!end) end = str + strlen(str); char *start = (char*)str; while (str < end && *str != '{') str = next_char(str, end); size_t len = (size_t)(str - start); bp_pat_t *pat = len > 0 ? Pattern(BP_STRING, start, str, len, (ssize_t)len, .string=strndup(start, len)) : NULL; str += 1; if (str < end) { bp_pat_t *interp = bp_pattern_nl(str, end, true); if (interp) pat = chain_together(pat, interp); pat->end = end; } __END_TRY_PATTERN__ return (maybe_pat_t){.success = true, .value.pat = pat}; } // // Wrapper for _bp_simplepattern() that expands any postfix operators (~, !~) // static bp_pat_t *bp_simplepattern(const char *str, const char *end) { const char *start = str; bp_pat_t *pat = _bp_simplepattern(str, end, false); if (pat == NULL) return pat; str = pat->end; // Expand postfix operators (if any) while (str < end) { enum bp_pattype_e type; if (matchchar(&str, '~', false, end)) type = BP_MATCH; else if (matchstr(&str, "!~", false, end)) type = BP_NOT_MATCH; else break; bp_pat_t *first = pat; bp_pat_t *second = bp_simplepattern(str, end); if (!second) parse_err(str, str, "There should be a valid pattern here"); pat = type == BP_MATCH ? Pattern(BP_MATCH, start, second->end, first->min_matchlen, first->max_matchlen, .pat=first, .must_match=second) : Pattern(BP_NOT_MATCH, start, second->end, first->min_matchlen, first->max_matchlen, .pat=first, .must_not_match=second); str = pat->end; } return pat; } // // Given a pattern and a replacement string, compile the two into a BP // replace pattern. // public maybe_pat_t bp_replacement(bp_pat_t *replacepat, const char *replacement, const char *end) { const char *p = replacement; if (!end) end = replacement + strlen(replacement); __TRY_PATTERN__ for (; p < end; p++) { if (*p == '\\') { if (!p[1] || p[1] == '\n') parse_err(p, p, "There should be an escape sequence or pattern here after this backslash."); ++p; } } __END_TRY_PATTERN__ size_t rlen = (size_t)(p-replacement); char *rcpy = new(char[rlen + 1]); memcpy(rcpy, replacement, rlen); bp_pat_t *pat = Pattern(BP_REPLACE, replacepat->start, replacepat->end, replacepat->min_matchlen, replacepat->max_matchlen, .pat=replacepat, .text=rcpy, .len=rlen); return (maybe_pat_t){.success = true, .value.pat = pat}; } static bp_pat_t *bp_pattern_nl(const char *str, const char *end, bool allow_nl) { str = after_spaces(str, allow_nl, end); bp_pat_t *pat = bp_simplepattern(str, end); if (pat != NULL) pat = expand_choices(pat, end, allow_nl); if (matchstr(&str, "=>", allow_nl, end)) pat = expand_replacements(pat ? pat : Pattern(BP_STRING, str-2, str-2, 0, 0), end, allow_nl); return pat; } // // Return a new back reference to an existing match. // public bp_pat_t *bp_raw_literal(const char *str, size_t len) { return Pattern(BP_STRING, str, &str[len], len, (ssize_t)len, .string=strndup(str, len)); } // // Compile a string representing a BP pattern into a pattern object. // public maybe_pat_t bp_pattern(const char *str, const char *end) { str = after_spaces(str, true, end); if (!end) end = str + strlen(str); __TRY_PATTERN__ bp_pat_t *ret = bp_pattern_nl(str, end, false); __END_TRY_PATTERN__ if (ret && after_spaces(ret->end, true, end) < end) return (maybe_pat_t){.success = false, .value.error.start = ret->end, .value.error.end = end, .value.error.msg = "Failed to parse this part of the pattern"}; else if (ret) return (maybe_pat_t){.success = true, .value.pat = ret}; else return (maybe_pat_t){.success = false, .value.error.start = str, .value.error.end = end, .value.error.msg = "Failed to parse this pattern"}; } public void free_all_pats(void) { while (allocated_pats) { bp_pat_t *tofree = allocated_pats; allocated_pats = tofree->next; delete(&tofree); } } public void delete_pat(bp_pat_t **at_pat, bool recursive) { bp_pat_t *pat = *at_pat; if (!pat) return; #define T(tag, ...) case tag: { auto _data = When(pat, tag); __VA_ARGS__; break; } #define F(field) delete_pat(&_data->field, true) if (recursive) { switch (pat->type) { T(BP_DEFINITIONS, F(meaning), F(next_def)) T(BP_REPEAT, F(sep), F(repeat_pat)) T(BP_CHAIN, F(first), F(second)) T(BP_UPTO, F(target), F(skip)) T(BP_UPTO_STRICT, F(target), F(skip)) T(BP_OTHERWISE, F(first), F(second)) T(BP_MATCH, F(pat), F(must_match)) T(BP_NOT_MATCH, F(pat), F(must_not_match)) T(BP_REPLACE, F(pat)) T(BP_CAPTURE, F(pat)) T(BP_TAGGED, F(pat)) T(BP_NOT, F(pat)) T(BP_AFTER, F(pat)) T(BP_BEFORE, F(pat)) T(BP_LEFTRECURSION, F(fallback)) T(BP_STRING, if (_data->string) { free((char*)_data->string); _data->string = NULL; }) default: break; } } #undef F #undef T if (pat->home) *(pat->home) = pat->next; if (pat->next) pat->next->home = pat->home; delete(at_pat); } int fprint_pattern(FILE *stream, bp_pat_t *pat) { if (!pat) return fputs("(null)", stream); switch (pat->type) { #define CASE(name, ...) case BP_ ## name: { __auto_type data = pat->__tagged.BP_##name; (void)data; int _printed = fputs(#name, stream); __VA_ARGS__; return _printed; } #define FMT(...) _printed += fprintf(stream, __VA_ARGS__) #define PAT(p) _printed += fprint_pattern(stream, p) CASE(ERROR) CASE(ANYCHAR) CASE(ID_START) CASE(ID_CONTINUE) CASE(STRING, FMT("(\"%s\")", data.string)) CASE(RANGE, FMT("('%c'-'%c')", data.low, data.high)) CASE(NOT, FMT("("); PAT(data.pat); FMT(")")) CASE(UPTO, FMT("("); PAT(data.target); FMT(", skip="); PAT(data.skip); FMT(")")) CASE(UPTO_STRICT, FMT("("); PAT(data.target); FMT(", skip=)"); PAT(data.skip)) CASE(REPEAT, FMT("(%u-%d, ", data.min, data.max); PAT(data.repeat_pat); FMT(", sep="); PAT(data.sep); FMT(")")) CASE(BEFORE, FMT("("); PAT(data.pat); FMT(")")) CASE(AFTER, FMT("("); PAT(data.pat); FMT(")")) CASE(CAPTURE, FMT("("); PAT(data.pat); FMT(", name=%.*s, backref=%s)", data.namelen, data.name, data.backreffable ? "yes" : "no")) CASE(OTHERWISE, FMT("("); PAT(data.first); FMT(", "); PAT(data.second); FMT(")")) CASE(CHAIN, FMT("("); PAT(data.first); FMT(", "); PAT(data.second); FMT(")")) CASE(MATCH, FMT("("); PAT(data.pat); FMT(", matches="); PAT(data.must_match); FMT(")")) CASE(NOT_MATCH, FMT("("); PAT(data.pat); FMT(", must_not_match="); PAT(data.must_not_match); FMT(")")) CASE(REPLACE, FMT("("); PAT(data.pat); FMT(", \"%.*s\")", data.len, data.text)) CASE(REF, FMT("(%.*s)", data.len, data.name)) CASE(NODENT) CASE(CURDENT) CASE(START_OF_FILE) CASE(START_OF_LINE) CASE(END_OF_FILE) CASE(END_OF_LINE) CASE(WORD_BOUNDARY) CASE(DEFINITIONS, FMT("(%.*s=", data.namelen, data.name); PAT(data.meaning); FMT("); "); PAT(data.next_def)) CASE(TAGGED, FMT("(%.*s=", data.namelen, data.name); PAT(data.pat); FMT(" backref=%s)", data.backreffable ? "yes" : "no")) #undef PAT #undef FMT #undef P default: return fputs("???", stream); } } // vim: ts=4 sw=0 et cino=L2,l1,(0,W4,m1,\:0