#define TAU 6.283185307179586476925286766559005768394338798750211641949 #define PHI 1.618033988749894848204586834365638117720309179805762862135 #define LOG_PHI 0.481211825059603447497758913424368423135184334385660519660 #define SQRT5 2.236067977499789696409173668731276235440618359611525724270 #define MAX_RESOLUTION 64 extern int resolution; extern float sigma; extern float amplitudes[MAX_RESOLUTION]; extern vec3 offsets[MAX_RESOLUTION]; extern float z; extern vec2 range_min, range_max; float cdf(float x) { return .5 + .5*sign(x)*sqrt(1.-exp(-4./TAU * x*x)); } // https://www.graphics.rwth-aachen.de/media/papers/jgt.pdf float noise3d(vec3 pos) { // Find the biggest fibonacci number F_n such that F_n < RESOLUTION int n = int(log((float(resolution)-1.)*SQRT5 + .5)/LOG_PHI); int dec = int(.5 + pow(PHI,n)/SQRT5); // F_n, using closed form Fibonacci int inc = int(.5 + dec/PHI); // F_(n-1) float noise = 0.; for (int i=0, j=0; i= dec) { j -= dec; } else { j += inc; if (j >= resolution) j -= dec; } // Convert golden ratio sequence into polar coordinate unit vector float phi = mod(float(i)*PHI,1.)*TAU; float theta = acos(mix(-1.,1.,mod(float(j)*PHI,1.))); // Make an orthonormal basis, where n1 is from polar phi/theta, // n2 is roated 90 degrees along phi, and n3 is the cross product of the two vec3 n1 = vec3(sin(phi)*cos(theta), sin(phi)*sin(theta), cos(phi)); vec3 n2 = vec3(sin(phi+TAU/4.)*cos(theta), sin(phi+TAU/4.)*sin(theta), cos(phi+TAU/4.)); vec3 n3 = cross(n1,n2); // Convert pos from x/y/z coordinates to n1/n2/n3 coordinates float u = dot(n1, pos); float v = dot(n2, pos); float w = dot(n3, pos); // Pull the amplitude from the shuffled array index ("j"), not "i", // otherwise neighboring unit vectors will have similar amplitudes! float a = amplitudes[j]; //float a = pow(mod(float(i+1)*(PHI-1.), 1.), .3); // Noise is the average of cosine of distance along each axis, shifted by offsets and scaled by amplitude. noise += a*(cos(u/a + offsets[i].x) + cos(v/a + offsets[i].y) + cos(w/a + offsets[i].z))/3.; } return cdf(noise/sigma); } vec4 effect(vec4 color, Image texture, vec2 texture_coords, vec2 pixel_coords) { vec3 coords = vec3(mix(range_min,range_max,texture_coords), z); float n = noise3d(coords); return vec4(n,n,n,1.); }