local noise = {} local exp,sin,cos,floor,log,acos,sqrt = math.exp,math.sin,math.cos,math.floor,math.log,math.acos,math.sqrt local GR, PI, TAU, SQRT5, LOG_GR = (sqrt(5)+1)/2, math.pi, 2*math.pi, sqrt(5), log((sqrt(5)+1)/2) local function cdf(x,sigma) return .5 + .5*(x<0 and -1 or 1)*sqrt(1.-exp(-4./TAU * x*x)) end local function _defaultArgs(resolution,random,decayFn) if not resolution then resolution = 4 end if not random then random = math.random end if not decayFn then decayFn = function(x) return .1^x end end return resolution,random,decayFn end local function _amplitudesAndOffsets(decayFn,numAmplitudes, numOffsets, random) local sigma = 0 local amplitudes = {} for i=1,numAmplitudes do local a = decayFn((i-1+random())/numAmplitudes) amplitudes[i] = a sigma = sigma + a^2 end sigma = math.sqrt(sigma/2) local offsets = {} for i=1,numOffsets do offsets[i] = random()*TAU end return amplitudes,sigma,offsets end noise.make1d = function(resolution,random,decayFn) resolution,random,decayFn = _defaultArgs(resolution,random,decayFn) local amplitudes,sigma,offsets = _amplitudesAndOffsets(decayFn,resolution,resolution,random) return function(x) local noise = 0 for i,a in ipairs(amplitudes) do noise = noise + a*cos(x/a + offsets[i]) end return cdf(noise/sigma); end end noise.make2d = function(resolution,random,decayFn) resolution,random,decayFn = _defaultArgs(resolution,random,decayFn) local amplitudes,sigma,offsets = _amplitudesAndOffsets(decayFn,resolution,2*resolution,random) sigma = sigma/sqrt(2) return function(x,y) local noise = 0 for i,a in ipairs(amplitudes) do local angle = ((i*GR) % 1)*TAU local u = x*cos(angle) - y*sin(angle) local v = x*cos(angle+TAU/4) - y*sin(angle+TAU/4) noise = noise + a/2*(cos(u/a + offsets[2*i]) + cos(v/a + offsets[2*i-1])) end return cdf(noise/sigma); end end noise.make3d = function(resolution,random,decayFn) resolution,random,decayFn = _defaultArgs(resolution,random,decayFn) local amplitudes,sigma,offsets = _amplitudesAndOffsets(decayFn,resolution,3*resolution,random) sigma = sigma/sqrt(3) return function(x,y,z) -- Find the biggest fibonacci number F_n such that F_n < resolution local n = floor(log((resolution-1)*SQRT5 + .5)/LOG_GR) local dec = floor(.5 + (GR^n)/SQRT5) -- F_n, using closed form Fibonacci local inc = floor(.5 + dec/GR) -- F_(n-1) local noise,i,j = 0,0,0 for i=0,resolution-1 do if j >= dec then j = j - dec else j = j + inc if j >= resolution then j = j - dec end end -- Convert golden ratio sequence into polar coordinate unit vector local phi = ((i*GR) % 1)*TAU local theta = acos(-1+2*((j*GR) % 1)) -- Make an orthonormal basis, where n1 is from polar phi/theta, -- n2 is roated 90 degrees along phi, and n3 is the cross product of the two local n1 = {sin(phi)*cos(theta), sin(phi)*sin(theta), cos(phi)} local n2 = {sin(phi+TAU/4.)*cos(theta), sin(phi+TAU/4.)*sin(theta), cos(phi+TAU/4.)} -- Cross product local n3 = {n1[2]*n2[3] - n1[3]*n2[2], n1[3]*n2[1] - n1[1]*n2[3], n1[1]*n2[2] - n1[2]*n2[1]} -- Convert pos from x/y/z coordinates to n1/n2/n3 coordinates local u = n1[1]*x + n1[2]*y + n1[3]*z local v = n2[1]*x + n2[2]*y + n2[3]*z local w = n3[1]*x + n3[2]*y + n3[3]*z -- Pull the amplitude from the shuffled array index ("j"), not "i", -- otherwise neighboring unit vectors will have similar amplitudes! local a = amplitudes[j+1] -- Noise is the average of cosine of distance along each axis, shifted by offsets and scaled by amplitude. noise = noise + a*(cos(u/a + offsets[3*i+1]) + cos(v/a + offsets[3*i+2]) + cos(w/a + offsets[3*i+3]))/3 end return cdf(noise/sigma) end end noise.make1dShader = function(resolution,random,decayFn) local shader = lg.newShader("noise1d.glsl") resolution,random,decayFn = _defaultArgs(resolution,random,decayFn) local amplitudes,sigma,offsets = _amplitudesAndOffsets(decayFn,resolution,resolution,random) shader:send("sigma",sigma) shader:send("resolution",resolution) shader:send("offsets",unpack(offsets)) shader:send("amplitudes",unpack(amplitudes)) shader:send("range_min", 0) shader:send("range_max", 0) return shader end noise.make2dShader = function(resolution,random,decayFn) local shader = lg.newShader("noise2d.glsl") resolution,random,decayFn = _defaultArgs(resolution,random,decayFn) local amplitudes,sigma,offsets = _amplitudesAndOffsets(decayFn,resolution,2*resolution,random) sigma = sigma/sqrt(2) local offsets2 = {} for i=1,#offsets-1,2 do table.insert(offsets2, {offsets[i],offsets[i+1]}) end shader:send("sigma",sigma) shader:send("resolution",resolution) shader:send("offsets",unpack(offsets2)) shader:send("amplitudes",unpack(amplitudes)) shader:send("range_min", {0,0}) shader:send("range_max", {1,1}) return shader end noise.make3dShader = function(resolution,random,decayFn) local shader = lg.newShader("noise3d.glsl") resolution,random,decayFn = _defaultArgs(resolution,random,decayFn) local amplitudes,sigma,offsets = _amplitudesAndOffsets(decayFn,resolution,3*resolution,random) sigma = sigma/sqrt(3) local offsets2 = {} for i=1,#offsets-1,3 do table.insert(offsets2, {offsets[i],offsets[i+1],offsets[i+2]}) end shader:send("sigma",sigma) shader:send("resolution",resolution) shader:send("offsets",unpack(offsets2)) shader:send("amplitudes",unpack(amplitudes)) shader:send("range_min", {0,0}) shader:send("range_max", {1,1}) return shader end return noise