local noise = {} local exp,sin,cos,floor,log,acos,sqrt = math.exp,math.sin,math.cos,math.floor,math.log,math.acos,math.sqrt local GR, PI, TAU, SQRT5, LOG_GR = (sqrt(5)+1)/2, math.pi, 2*math.pi, sqrt(5), log((sqrt(5)+1)/2) local function cdf(x,sigma) return .5 + .5*(x<0 and -1 or 1)*sqrt(1.-exp(-4./TAU * x*x)) end local function _defaultArgs(resolution,random,decayFn) if not resolution then resolution = 4 end if not random then random = math.random end if not decayFn then decayFn = function(x) return .1^x end end return resolution,random,decayFn end local function _amplitudesAndOffsets(decayFn,numAmplitudes, numOffsets, random) local sigma = 0 local amplitudes = {} for i=1,numAmplitudes do local a = decayFn((i-1+random())/numAmplitudes) amplitudes[i] = a sigma = sigma + a^2 end sigma = math.sqrt(sigma/2) local offsets = {} for i=1,numOffsets do offsets[i] = random()*TAU end return amplitudes,sigma,offsets end noise.make1d = function(resolution,random,decayFn) resolution,random,decayFn = _defaultArgs(resolution,random,decayFn) local amplitudes,sigma,offsets = _amplitudesAndOffsets(decayFn,resolution,resolution,random) return function(x) local noise = 0 for i,a in ipairs(amplitudes) do noise = noise + a*cos(x/a + offsets[i]) end return cdf(noise/sigma); end end noise.make2d = function(resolution,random,decayFn) resolution,random,decayFn = _defaultArgs(resolution,random,decayFn) local amplitudes,sigma,offsets = _amplitudesAndOffsets(decayFn,resolution,2*resolution,random) sigma = sigma/sqrt(2) return function(x,y) local noise = 0 for i,a in ipairs(amplitudes) do local angle = ((i*GR) % 1)*TAU local u = x*cos(angle) - y*sin(angle) local v = x*cos(angle+TAU/4) - y*sin(angle+TAU/4) noise = noise + a/2*(cos(u/a + offsets[2*i]) + cos(v/a + offsets[2*i-1])) end return cdf(noise/sigma); end end noise.make3d = function(resolution,random,decayFn) resolution,random,decayFn = _defaultArgs(resolution,random,decayFn) local amplitudes,sigma,offsets = _amplitudesAndOffsets(decayFn,resolution,3*resolution,random) sigma = sigma/sqrt(3) return function(x,y,z) -- Find the biggest fibonacci number F_n such that F_n < resolution local n = floor(log((resolution-1)*SQRT5 + .5)/LOG_GR) local dec = floor(.5 + (GR^n)/SQRT5) -- F_n, using closed form Fibonacci local inc = floor(.5 + dec/GR) -- F_(n-1) local noise,i,j = 0,0,0 for i=0,resolution-1 do if j >= dec then j = j - dec else j = j + inc if j >= resolution then j = j - dec end end -- Convert golden ratio sequence into polar coordinate unit vector local phi = ((i*GR) % 1)*TAU local theta = acos(-1+2*((j*GR) % 1)) -- Make an orthonormal basis, where n1 is from polar phi/theta, -- n2 is roated 90 degrees along phi, and n3 is the cross product of the two local n1 = {sin(phi)*cos(theta), sin(phi)*sin(theta), cos(phi)} local n2 = {sin(phi+TAU/4.)*cos(theta), sin(phi+TAU/4.)*sin(theta), cos(phi+TAU/4.)} -- Cross product local n3 = {n1[2]*n2[3] - n1[3]*n2[2], n1[3]*n2[1] - n1[1]*n2[3], n1[1]*n2[2] - n1[2]*n2[1]} -- Convert pos from x/y/z coordinates to n1/n2/n3 coordinates local u = n1[1]*x + n1[2]*y + n1[3]*z local v = n2[1]*x + n2[2]*y + n2[3]*z local w = n3[1]*x + n3[2]*y + n3[3]*z -- Pull the amplitude from the shuffled array index ("j"), not "i", -- otherwise neighboring unit vectors will have similar amplitudes! local a = amplitudes[j+1] -- Noise is the average of cosine of distance along each axis, shifted by offsets and scaled by amplitude. noise = noise + a*(cos(u/a + offsets[3*i+1]) + cos(v/a + offsets[3*i+2]) + cos(w/a + offsets[3*i+3]))/3 end return cdf(noise/sigma) end end local shader1d = [[ #define TAU 6.283185307179586476925286766559005768394338798750211641949 #define MAX_RESOLUTION 64 extern int resolution; extern float sigma, range_min, range_max; extern float amplitudes[MAX_RESOLUTION]; extern float offsets[MAX_RESOLUTION]; vec4 effect(vec4 color, Image texture, vec2 texture_coords, vec2 pixel_coords) { float x = mix(range_min,range_max,texture_coords.x); float noise = 0.; for (int i=0; i < resolution; i++) { float a = amplitudes[i]; noise += a*cos(x/a + offsets[i]); } noise = noise/sigma; noise = .5 + .5*sign(noise)*sqrt(1.-exp(-4./TAU * noise*noise)); return vec4(noise,noise,noise,1.); } ]] noise.make1dShader = function(resolution,random,decayFn) if resolution > 64 then error("Resolution cannot exceed 64") end local shader = lg.newShader(shader1d) resolution,random,decayFn = _defaultArgs(resolution,random,decayFn) local amplitudes,sigma,offsets = _amplitudesAndOffsets(decayFn,resolution,resolution,random) shader:send("sigma",sigma) shader:send("resolution",resolution) shader:send("offsets",unpack(offsets)) shader:send("amplitudes",unpack(amplitudes)) shader:send("range_min", 0) shader:send("range_max", 0) return shader end local shader2d = [[ #define TAU 6.283185307179586476925286766559005768394338798750211641949 #define PHI 1.618033988749894848204586834365638117720309179805762862135 #define MAX_RESOLUTION 64 extern int resolution; extern float sigma; extern float amplitudes[MAX_RESOLUTION]; extern vec2 offsets[MAX_RESOLUTION]; extern vec2 range_min, range_max; vec4 effect(vec4 color, Image texture, vec2 texture_coords, vec2 pixel_coords) { vec2 pos = mix(range_min,range_max,texture_coords); float noise = 0.; for (int i=0; i < resolution; i++) { float angle = mod(float(i)*PHI, 1.)*TAU; float u = pos.x*cos(angle) - pos.y*sin(angle); float v = pos.x*cos(angle+TAU/4.) - pos.y*sin(angle+TAU/4.); float a = amplitudes[i]; noise += a*mix(cos(u/a + offsets[i].x), cos(v/a + offsets[i].y), .5); } noise = noise/sigma; noise = .5 + .5*sign(noise)*sqrt(1.-exp(-4./TAU * noise*noise)); return vec4(noise,noise,noise,1.); } ]] noise.make2dShader = function(resolution,random,decayFn) if resolution > 64 then error("Resolution cannot exceed 64") end local shader = lg.newShader(shader2d) resolution,random,decayFn = _defaultArgs(resolution,random,decayFn) local amplitudes,sigma,offsets = _amplitudesAndOffsets(decayFn,resolution,2*resolution,random) sigma = sigma/sqrt(2) local offsets2 = {} for i=1,#offsets-1,2 do table.insert(offsets2, {offsets[i],offsets[i+1]}) end shader:send("sigma",sigma) shader:send("resolution",resolution) shader:send("offsets",unpack(offsets2)) shader:send("amplitudes",unpack(amplitudes)) shader:send("range_min", {0,0}) shader:send("range_max", {1,1}) return shader end local shader3d = [[ #define TAU 6.283185307179586476925286766559005768394338798750211641949 #define PHI 1.618033988749894848204586834365638117720309179805762862135 #define LOG_PHI 0.481211825059603447497758913424368423135184334385660519660 #define SQRT5 2.236067977499789696409173668731276235440618359611525724270 #define MAX_RESOLUTION 64 extern int resolution; extern float sigma, z; extern float amplitudes[MAX_RESOLUTION]; extern vec3 offsets[MAX_RESOLUTION]; extern vec2 range_min, range_max; // https://www.graphics.rwth-aachen.de/media/papers/jgt.pdf vec4 effect(vec4 color, Image texture, vec2 texture_coords, vec2 pixel_coords) { vec3 pos = vec3(mix(range_min,range_max,texture_coords), z); // Find the biggest fibonacci number F_n such that F_n < RESOLUTION int n = int(log((float(resolution)-1.)*SQRT5 + .5)/LOG_PHI); int dec = int(.5 + pow(PHI,n)/SQRT5); // F_n, using closed form Fibonacci int inc = int(.5 + dec/PHI); // F_(n-1) float noise = 0.; for (int i=0, j=0; i= dec) { j -= dec; } else { j += inc; if (j >= resolution) j -= dec; } // Convert golden ratio sequence into polar coordinate unit vector float phi = mod(float(i)*PHI,1.)*TAU; float theta = acos(mix(-1.,1.,mod(float(j)*PHI,1.))); // Make an orthonormal basis, where n1 is from polar phi/theta, // n2 is roated 90 degrees along phi, and n3 is the cross product of the two vec3 n1 = vec3(sin(phi)*cos(theta), sin(phi)*sin(theta), cos(phi)); vec3 n2 = vec3(sin(phi+TAU/4.)*cos(theta), sin(phi+TAU/4.)*sin(theta), cos(phi+TAU/4.)); vec3 n3 = cross(n1,n2); // Convert pos from x/y/z coordinates to n1/n2/n3 coordinates float u = dot(n1, pos); float v = dot(n2, pos); float w = dot(n3, pos); // Pull the amplitude from the shuffled array index ("j"), not "i", // otherwise neighboring unit vectors will have similar amplitudes! float a = amplitudes[j]; //float a = pow(mod(float(i+1)*(PHI-1.), 1.), .3); // Noise is the average of cosine of distance along each axis, shifted by offsets and scaled by amplitude. noise += a*(cos(u/a + offsets[i].x) + cos(v/a + offsets[i].y) + cos(w/a + offsets[i].z))/3.; } noise = noise/sigma; noise = .5 + .5*sign(noise)*sqrt(1.-exp(-4./TAU * noise*noise)); return vec4(noise,noise,noise,1.); } ]] noise.make3dShader = function(resolution,random,decayFn) if resolution > 64 then error("Resolution cannot exceed 64") end local shader = lg.newShader(shader3d) resolution,random,decayFn = _defaultArgs(resolution,random,decayFn) local amplitudes,sigma,offsets = _amplitudesAndOffsets(decayFn,resolution,3*resolution,random) sigma = sigma/sqrt(3) local offsets2 = {} for i=1,#offsets-1,3 do table.insert(offsets2, {offsets[i],offsets[i+1],offsets[i+2]}) end shader:send("sigma",sigma) shader:send("resolution",resolution) shader:send("offsets",unpack(offsets2)) shader:send("amplitudes",unpack(amplitudes)) shader:send("range_min", {0,0}) shader:send("range_max", {1,1}) return shader end return noise