nomsu/core/operators.nom

155 lines
7.8 KiB
Plaintext

#..
This file contains definitions of operators like "+" and "and".
use "core/metaprogramming.nom"
# Indexing:
immediately:
#.. NOTE!!! It's critical that there are spaces around %key if it's a string,
otherwise, Lua will get confused and interpret %obj[[[foo]]] as %obj("[foo]")
instead of %obj[ "foo" ].
It's also critical to have parens around %obj, otherwise Lua is too dumb to
realize that {x=1}["x"] is the same as ({x=1})["x"] or that
{x=1}.x is the same as ({x=1}).x
parse [..]
%obj' %key, %obj's %key, %key in %obj, %key'th in %obj, %key of %obj,
%key st in %obj, %key nd in %obj, %key rd in %obj, %key th in %obj,
..as: %obj.%key
# Comparison Operators
immediately:
compile [%x < %y] to: Lua value "(\(%x as lua expr) < \(%y as lua expr))"
compile [%x > %y] to: Lua value "(\(%x as lua expr) > \(%y as lua expr))"
compile [%x <= %y] to: Lua value "(\(%x as lua expr) <= \(%y as lua expr))"
compile [%x >= %y] to: Lua value "(\(%x as lua expr) >= \(%y as lua expr))"
# TODO: optimize case of [%x,%y] = [1,2]
compile [%a is %b, %a = %b, %a == %b] to:
lua> ".."
local safe = {Text=true, Number=true};
local a_lua, b_lua = nomsu:tree_to_lua(\%a), nomsu:tree_to_lua(\%b);
if safe[\%a.type] or safe[\%b.type] then
return Lua.Value(tree.source, "(", a_lua, " == ", b_lua, ")");
else
return Lua.Value(tree.source, "utils.equivalent(", a_lua, ", ", b_lua, ")");
end
compile [%a isn't %b, %a is not %b, %a not= %b, %a != %b] to:
lua> ".."
local safe = {Text=true, Number=true};
local a_lua, b_lua = nomsu:tree_to_lua(\%a), nomsu:tree_to_lua(\%b);
if safe[\%a.type] or safe[\%b.type] then
return Lua.Value(tree.source, "(", a_lua, " ~= ", b_lua, ")");
else
return Lua.Value(tree.source, "(not utils.equivalent(", a_lua, ", ", b_lua, "))");
end
# For strict identity checking, use (%x's id) is (%y's id)
compile [%'s id, id of %] to: Lua value "nomsu.ids[\(% as lua expr)]"
# Variable assignment operator
immediately:
compile [%var <- %value] to:
lua> "local \%var_lua = nomsu:tree_to_lua(\%var);"
assume %var_lua.is_value or barf "Invalid target for assignment: \(%var's source code)"
lua> "local \%value_lua = nomsu:tree_to_lua(\%value);"
assume %value_lua.is_value or barf "Invalid value for assignment: \(%value's source code)"
lua> ".."
local lua = Lua(tree.source, \%var_lua, ' = ', \%value_lua, ';');
if \%var.type == 'Var' then
print("Added var from assignment: "..tostring(\%var:as_lua(nomsu)));
lua:add_free_vars(\%var);
end
return lua;
immediately:
# Simultaneous mutli-assignments like: x,y,z = 1,x,3;
compile [<- %assignments] to:
assume ((%assignments' "type") is "Dict") or barf ".."
Expected a Dict for the assignments part of '<- %' statement, not \(%assignments' source code)
lua> ".."
local lhs, rhs = Lua(tree.source), Lua(\%assignments.source);
for i, item in ipairs(\%assignments.value) do
local target, value = item.key, item.value;
local target_lua = nomsu:tree_to_lua(target);
if not target_lua.is_value then error("Invalid target for assignment: "..target:get_src()); end
local value_lua = nomsu:tree_to_lua(value);
if not value_lua.is_value then error("Invalid value for assignment: "..value:get_src()); end
if target.type == "Var" then
lhs:add_free_vars(target);
end
if i > 1 then
lhs:append(", ");
rhs:append(", ");
end
lhs:append(target_lua);
rhs:append(value_lua);
end
return Lua(tree.source, lhs, " = ", rhs, ";");
immediately:
compile [export %var <- %value] to:
%var_lua <- (%var as lua)
assume %var_lua.is_value or barf "Invalid target for assignment: \(%var's source code)"
%value_lua <- (%value as lua)
assume %value_lua.is_value or barf "Invalid value for assignment: \(%value's source code)"
return: Lua "\(%var_lua) = \(%value_lua);"
compile [exporting %exported %body] to:
%body_lua <- (%body as lua)
lua> "\%body_lua:declare_locals(\%exported);"
return %body_lua
parse [with %assignments %body] as:
# TODO: clean up and handle: with {%x:1}: %y <- 2
lua> "do"
<- %assignments
lua> "end"
immediately:
# Math Operators
compile [%x + %y] to: Lua value "(\(%x as lua expr) + \(%y as lua expr))"
compile [%x - %y] to: Lua value "(\(%x as lua expr) - \(%y as lua expr))"
compile [%x * %y] to: Lua value "(\(%x as lua expr) * \(%y as lua expr))"
compile [%x / %y] to: Lua value "(\(%x as lua expr) / \(%y as lua expr))"
compile [%x ^ %y] to: Lua value "(\(%x as lua expr) ^ \(%y as lua expr))"
compile [%x wrapped around %y, %x mod %y] to: Lua value "(\(%x as lua expr) % \(%y as lua expr))"
# 3-part chained comparisons
# (uses a lambda to avoid re-evaluating middle value, while still being an expression)
parse [%x < %y < %z] as: =lua "(function(x,y,z) return x < y and y < z; end)(\%x,\%y,\%z)"
parse [%x <= %y < %z] as: =lua "(function(x,y,z) return x <= y and y < z; end)(\%x,\%y,\%z)"
parse [%x < %y <= %z] as: =lua "(function(x,y,z) return x < y and y <= z; end)(\%x,\%y,\%z)"
parse [%x <= %y <= %z] as: =lua "(function(x,y,z) return x <= y and y <= z; end)(\%x,\%y,\%z)"
parse [%x > %y > %z] as: =lua "(function(x,y,z) return x > y and y > z; end)(\%x,\%y,\%z)"
parse [%x >= %y > %z] as: =lua "(function(x,y,z) return x >= y and y > z; end)(\%x,\%y,\%z)"
parse [%x > %y >= %z] as: =lua "(function(x,y,z) return x > y and y >= z; end)(\%x,\%y,\%z)"
parse [%x >= %y >= %z] as: =lua "(function(x,y,z) return x >= y and y >= z; end)(\%x,\%y,\%z)"
# TODO: optimize for common case where x,y,z are all either variables or number literals
# Boolean Operators
compile [%x and %y] to: Lua value "(\(%x as lua expr) and \(%y as lua expr))"
compile [%x or %y] to: Lua value "(\(%x as lua expr) or \(%y as lua expr))"
# Bitwise Operators
compile [%a OR %b, %a | %b] to: Lua value "bit32.bor(\(%a as lua expr), \(%b as lua expr))"
compile [%a XOR %b] to: Lua value "bit32.bxor(\(%a as lua expr), \(%b as lua expr))"
compile [%a AND %b, %a & %b] to: Lua value "bit32.band(\(%a as lua expr), \(%b as lua expr))"
compile [NOT %, ~ %] to: Lua value "bit32.bnot(\(% as lua expr))"
compile [%x LSHIFT %shift, %x << %shift] to: Lua value "bit32.lshift(\(%x as lua expr), \(%shift as lua expr))"
compile [%x RSHIFT %shift, %x >>> %shift] to: Lua value "bit32.rshift(\(%x as lua expr), \(%shift as lua expr))"
compile [%x ARSHIFT %shift, %x >> %shift] to: Lua value "bit32.arshift(\(%x as lua expr), \(%shift as lua expr))"
# TODO: implement OR, XOR, AND for multiple operands?
# Unary operators
compile [- %] to: Lua value "(- \(% as lua expr))"
compile [not %] to: Lua value "(not \(% as lua expr))"
# Update operators
immediately:
parse [%var + <- %, %var +<- %] as: %var <- (%var + %)
parse [%var - <- %, %var -<- %] as: %var <- (%var - %)
parse [%var * <- %, %var *<- %] as: %var <- (%var * %)
parse [%var / <- %, %var /<- %] as: %var <- (%var / %)
parse [%var ^ <- %, %var ^<- %] as: %var <- (%var ^ %)
parse [%var and <- %] as: %var <- (%var and %)
parse [%var or <- %] as: %var <- (%var or %)
parse [wrap %var around %] as: %var <- (%var wrapped around %)