From 58bf02decbefc7ee2b8e170091cb1410611b3cca Mon Sep 17 00:00:00 2001 From: Bruce Hill Date: Thu, 27 Feb 2025 17:33:07 -0500 Subject: [PATCH] Add purple code --- purple.py | 175 ++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 175 insertions(+) create mode 100644 purple.py diff --git a/purple.py b/purple.py new file mode 100644 index 0000000..67d05a6 --- /dev/null +++ b/purple.py @@ -0,0 +1,175 @@ +import numpy as np +import matplotlib.pyplot as plt + +def gaussian_sensitivity(peak1, peak2, sigma, wavelengths, depth=2): + if depth <= 0: return 0 + return (np.exp(-((wavelengths - peak1) ** 2) / (2 * sigma ** 2)) + + .25*np.exp(-((wavelengths - peak2) ** 2) / (2 * sigma ** 2))) + +def section_break(): + input("\n" + "="*80 + "\n") + +wavelengths = np.linspace(300, 700, 500) + +# Estimated sigma values for human and bird cones +sigma_human = 40 +sigma_starling = 35 + +# Human cone sensitivities +human_peaks = {(437, 315): 'blue', (533,345): 'green', (564,355): 'red'} + +# Starling cone sensitivities (including UV) +starling_peaks = {(362,250): 'violet', (449,320): 'blue', (504,340): 'green', (563,360): 'red'} + +ANSI_COLORS = { + "blue": "\033[34m", + "red": "\033[31m", + "green": "\033[32m", + "violet": "\033[38;5;177m", + "purple": "\033[38;5;177m", +} + +''' +plt.figure(figsize=(10, 6)) + +# Plot human sensitivities +plt.subplot(2, 1, 1) +for (peak1, peak2), color in human_peaks.items(): + plt.plot(wavelengths, gaussian_sensitivity(peak1, peak2, sigma_human, wavelengths), color=color, label=f'λ_max = {peak1} nm') +plt.title("Human Retinal Cone Sensitivity") +plt.ylabel("Relative Absorption") +plt.legend() + +# Plot starling sensitivities +plt.subplot(2, 1, 2) +for (peak1,peak2), color in starling_peaks.items(): + plt.plot(wavelengths, gaussian_sensitivity(peak1, peak2, sigma_starling, wavelengths), color=color, label=f'λ_max = {peak1} nm') +plt.title("European Starling Retinal Cone Sensitivity") +plt.xlabel("Wavelength (nm)") +plt.ylabel("Relative Absorption") +plt.legend() + +plt.tight_layout() +plt.savefig("retinal_cones.png") +''' + +def human_activations(color_name, wavelengths, verbose=False): + raw_activations = {} + for (peak1,peak2), color in human_peaks.items(): + raw_activations[color] = gaussian_sensitivity(peak1, peak2, sigma_human, wavelengths) + + if verbose: + print(f"\033[1mHumans\033[m see {ANSI_COLORS[color_name]}{color_name}\033[m as:") + + activations = [] + for color,levels in raw_activations.items(): + k = sum(levels)/sum(sum(l) for l in raw_activations.values()) + activations.append(k) + if verbose: + print(f"{ANSI_COLORS[color]}{color}: \033[10G {k:%}\033[m") + if verbose: + print("") + vec = np.array(activations) + return vec / np.linalg.norm(vec) + +human_activations("violet", np.array([380]), verbose=True) +human_activations("purple", np.array([623, 462]), verbose=True) +print("\nThey look the same to us!") + +section_break() + +def starling_activations(color_name, wavelengths, verbose=False): + raw_activations = {} + for (peak1,peak2), color in starling_peaks.items(): + raw_activations[color] = gaussian_sensitivity(peak1, peak2, sigma_starling, wavelengths) + + if verbose: + print(f"\033[1mStarlings\033[m see {ANSI_COLORS[color_name]}{color_name}\033[m as:") + + activations = [] + for color,levels in raw_activations.items(): + k = sum(levels)/sum(sum(l) for l in raw_activations.values()) + activations.append(k) + if verbose: + print(f"{ANSI_COLORS[color]}{color}: \033[10G {k:%}\033[m") + if verbose: + print("") + vec = np.array(activations) + return vec / np.linalg.norm(vec) + +starling_activations("violet", np.array([380]), verbose=True) +starling_purple = starling_activations("purple", np.array([623, 455]), verbose=True) +print("\nThey look completely differe to a starling!") + + +section_break() + +print("...But what pure wavelength looks like purple?") + +def wavelength_to_rgb(wavelength, gamma=0.8): + ''' + This converts a given wavelength of light to an + approximate RGB color value. The wavelength must be given + in nanometers in the range from 380 nm through 750 nm + (789 THz through 400 THz). + Based on code by Dan Bruton + http://www.physics.sfasu.edu/astro/color/spectra.html + ''' + wavelength = float(wavelength) + if wavelength >= 380 and wavelength <= 440: + attenuation = 0.3 + 0.7 * (wavelength - 380) / (440 - 380) + R = ((-(wavelength - 440) / (440 - 380)) * attenuation) ** gamma + G = 0.0 + B = (1.0 * attenuation) ** gamma + elif wavelength >= 440 and wavelength <= 490: + R = 0.0 + G = ((wavelength - 440) / (490 - 440)) ** gamma + B = 1.0 + elif wavelength >= 490 and wavelength <= 510: + R = 0.0 + G = 1.0 + B = (-(wavelength - 510) / (510 - 490)) ** gamma + elif wavelength >= 510 and wavelength <= 580: + R = ((wavelength - 510) / (580 - 510)) ** gamma + G = 1.0 + B = 0.0 + elif wavelength >= 580 and wavelength <= 645: + R = 1.0 + G = (-(wavelength - 645) / (645 - 580)) ** gamma + B = 0.0 + elif wavelength >= 645 and wavelength <= 750: + attenuation = 0.3 + 0.7 * (750 - wavelength) / (750 - 645) + R = (1.0 * attenuation) ** gamma + G = 0.0 + B = 0.0 + else: + R = 0.0 + G = 0.0 + B = 0.0 + R *= 255 + G *= 255 + B *= 255 + return (int(R), int(G), int(B)) + +print("") +closest_wavelength = None +best_dist = None +import time +for wavelength in range(100,700,2): + activations = starling_activations("???", np.array([wavelength]), verbose=False) + # dist = np.linalg.norm(starling_purple - activations) + dist = np.dot(starling_purple, activations) + if closest_wavelength is None or dist > best_dist: + closest_wavelength, best_dist = wavelength, dist + r,g,b = wavelength_to_rgb(wavelength) + #print(f"\033[48;2;{r};{g};{b}m Scanning: {closest_wavelength}nm... \033[m dist = {dist}", end="\033[K\n", flush=True) + +section_break() + +r,g,b = wavelength_to_rgb(closest_wavelength) +print(f"\033[48;2;{r};{g};{b}m WINNER: {closest_wavelength}nm! (blue) \033[m\n\n") + + +# import subprocess +# subprocess.run(["sxiv", "retinal_cones.png"]) +# plt.show()