176 lines
5.7 KiB
Python
176 lines
5.7 KiB
Python
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
|
|
def gaussian_sensitivity(peak1, peak2, sigma, wavelengths, depth=2):
|
|
if depth <= 0: return 0
|
|
return (np.exp(-((wavelengths - peak1) ** 2) / (2 * sigma ** 2))
|
|
+ .25*np.exp(-((wavelengths - peak2) ** 2) / (2 * sigma ** 2)))
|
|
|
|
def section_break():
|
|
input("\n" + "="*80 + "\n")
|
|
|
|
wavelengths = np.linspace(300, 700, 500)
|
|
|
|
# Estimated sigma values for human and bird cones
|
|
sigma_human = 40
|
|
sigma_starling = 35
|
|
|
|
# Human cone sensitivities
|
|
human_peaks = {(437, 315): 'blue', (533,345): 'green', (564,355): 'red'}
|
|
|
|
# Starling cone sensitivities (including UV)
|
|
starling_peaks = {(362,250): 'violet', (449,320): 'blue', (504,340): 'green', (563,360): 'red'}
|
|
|
|
ANSI_COLORS = {
|
|
"blue": "\033[34m",
|
|
"red": "\033[31m",
|
|
"green": "\033[32m",
|
|
"violet": "\033[38;5;177m",
|
|
"purple": "\033[38;5;177m",
|
|
}
|
|
|
|
'''
|
|
plt.figure(figsize=(10, 6))
|
|
|
|
# Plot human sensitivities
|
|
plt.subplot(2, 1, 1)
|
|
for (peak1, peak2), color in human_peaks.items():
|
|
plt.plot(wavelengths, gaussian_sensitivity(peak1, peak2, sigma_human, wavelengths), color=color, label=f'λ_max = {peak1} nm')
|
|
plt.title("Human Retinal Cone Sensitivity")
|
|
plt.ylabel("Relative Absorption")
|
|
plt.legend()
|
|
|
|
# Plot starling sensitivities
|
|
plt.subplot(2, 1, 2)
|
|
for (peak1,peak2), color in starling_peaks.items():
|
|
plt.plot(wavelengths, gaussian_sensitivity(peak1, peak2, sigma_starling, wavelengths), color=color, label=f'λ_max = {peak1} nm')
|
|
plt.title("European Starling Retinal Cone Sensitivity")
|
|
plt.xlabel("Wavelength (nm)")
|
|
plt.ylabel("Relative Absorption")
|
|
plt.legend()
|
|
|
|
plt.tight_layout()
|
|
plt.savefig("retinal_cones.png")
|
|
'''
|
|
|
|
def human_activations(color_name, wavelengths, verbose=False):
|
|
raw_activations = {}
|
|
for (peak1,peak2), color in human_peaks.items():
|
|
raw_activations[color] = gaussian_sensitivity(peak1, peak2, sigma_human, wavelengths)
|
|
|
|
if verbose:
|
|
print(f"\033[1mHumans\033[m see {ANSI_COLORS[color_name]}{color_name}\033[m as:")
|
|
|
|
activations = []
|
|
for color,levels in raw_activations.items():
|
|
k = sum(levels)/sum(sum(l) for l in raw_activations.values())
|
|
activations.append(k)
|
|
if verbose:
|
|
print(f"{ANSI_COLORS[color]}{color}: \033[10G {k:%}\033[m")
|
|
if verbose:
|
|
print("")
|
|
vec = np.array(activations)
|
|
return vec / np.linalg.norm(vec)
|
|
|
|
human_activations("violet", np.array([380]), verbose=True)
|
|
human_activations("purple", np.array([623, 462]), verbose=True)
|
|
print("\nThey look the same to us!")
|
|
|
|
section_break()
|
|
|
|
def starling_activations(color_name, wavelengths, verbose=False):
|
|
raw_activations = {}
|
|
for (peak1,peak2), color in starling_peaks.items():
|
|
raw_activations[color] = gaussian_sensitivity(peak1, peak2, sigma_starling, wavelengths)
|
|
|
|
if verbose:
|
|
print(f"\033[1mStarlings\033[m see {ANSI_COLORS[color_name]}{color_name}\033[m as:")
|
|
|
|
activations = []
|
|
for color,levels in raw_activations.items():
|
|
k = sum(levels)/sum(sum(l) for l in raw_activations.values())
|
|
activations.append(k)
|
|
if verbose:
|
|
print(f"{ANSI_COLORS[color]}{color}: \033[10G {k:%}\033[m")
|
|
if verbose:
|
|
print("")
|
|
vec = np.array(activations)
|
|
return vec / np.linalg.norm(vec)
|
|
|
|
starling_activations("violet", np.array([380]), verbose=True)
|
|
starling_purple = starling_activations("purple", np.array([623, 455]), verbose=True)
|
|
print("\nThey look completely differe to a starling!")
|
|
|
|
|
|
section_break()
|
|
|
|
print("...But what pure wavelength looks like purple?")
|
|
|
|
def wavelength_to_rgb(wavelength, gamma=0.8):
|
|
'''
|
|
This converts a given wavelength of light to an
|
|
approximate RGB color value. The wavelength must be given
|
|
in nanometers in the range from 380 nm through 750 nm
|
|
(789 THz through 400 THz).
|
|
Based on code by Dan Bruton
|
|
http://www.physics.sfasu.edu/astro/color/spectra.html
|
|
'''
|
|
wavelength = float(wavelength)
|
|
if wavelength >= 380 and wavelength <= 440:
|
|
attenuation = 0.3 + 0.7 * (wavelength - 380) / (440 - 380)
|
|
R = ((-(wavelength - 440) / (440 - 380)) * attenuation) ** gamma
|
|
G = 0.0
|
|
B = (1.0 * attenuation) ** gamma
|
|
elif wavelength >= 440 and wavelength <= 490:
|
|
R = 0.0
|
|
G = ((wavelength - 440) / (490 - 440)) ** gamma
|
|
B = 1.0
|
|
elif wavelength >= 490 and wavelength <= 510:
|
|
R = 0.0
|
|
G = 1.0
|
|
B = (-(wavelength - 510) / (510 - 490)) ** gamma
|
|
elif wavelength >= 510 and wavelength <= 580:
|
|
R = ((wavelength - 510) / (580 - 510)) ** gamma
|
|
G = 1.0
|
|
B = 0.0
|
|
elif wavelength >= 580 and wavelength <= 645:
|
|
R = 1.0
|
|
G = (-(wavelength - 645) / (645 - 580)) ** gamma
|
|
B = 0.0
|
|
elif wavelength >= 645 and wavelength <= 750:
|
|
attenuation = 0.3 + 0.7 * (750 - wavelength) / (750 - 645)
|
|
R = (1.0 * attenuation) ** gamma
|
|
G = 0.0
|
|
B = 0.0
|
|
else:
|
|
R = 0.0
|
|
G = 0.0
|
|
B = 0.0
|
|
R *= 255
|
|
G *= 255
|
|
B *= 255
|
|
return (int(R), int(G), int(B))
|
|
|
|
print("")
|
|
closest_wavelength = None
|
|
best_dist = None
|
|
import time
|
|
for wavelength in range(100,700,2):
|
|
activations = starling_activations("???", np.array([wavelength]), verbose=False)
|
|
# dist = np.linalg.norm(starling_purple - activations)
|
|
dist = np.dot(starling_purple, activations)
|
|
if closest_wavelength is None or dist > best_dist:
|
|
closest_wavelength, best_dist = wavelength, dist
|
|
r,g,b = wavelength_to_rgb(wavelength)
|
|
#print(f"\033[48;2;{r};{g};{b}m Scanning: {closest_wavelength}nm... \033[m dist = {dist}", end="\033[K\n", flush=True)
|
|
|
|
section_break()
|
|
|
|
r,g,b = wavelength_to_rgb(closest_wavelength)
|
|
print(f"\033[48;2;{r};{g};{b}m WINNER: {closest_wavelength}nm! (blue) \033[m\n\n")
|
|
|
|
|
|
# import subprocess
|
|
# subprocess.run(["sxiv", "retinal_cones.png"])
|
|
# plt.show()
|