recurse-talks/purple/purple.py
2025-03-06 00:51:15 -05:00

147 lines
5.2 KiB
Python

import numpy as np
import math
import matplotlib.pyplot as plt
from wavelength import wavelength_to_ansi
def gaussian_sensitivity(peak1, peak2, sigma, wavelengths, depth=2):
if depth <= 0: return 0
return (np.exp(-((wavelengths - peak1) ** 2) / (2 * sigma ** 2))
+ .25*np.exp(-((wavelengths - peak2) ** 2) / (2 * sigma ** 2)))
def section_break():
input("\n" + "="*80 + "\n")
wavelengths = np.linspace(300, 700, 500)
# Estimated sigma values for human and bird cones
sigma_human = 40
sigma_starling = 35
# Human cone sensitivities
human_peaks = {(437, 315): 'blue', (533,345): 'green', (564,355): 'red'}
# Starling cone sensitivities (including UV)
starling_peaks = {(362,250): 'violet', (449,320): 'cyan', (504,340): 'green', (563,360): 'red'}
ANSI_COLORS = {
"blue": "\033[34m",
"red": "\033[31m",
"green": "\033[32m",
"cyan": "\033[36m",
"violet": "\033[38;5;177m",
"purple": "\033[38;5;177m",
}
'''
plt.figure(figsize=(10, 6))
# Plot human sensitivities
plt.subplot(2, 1, 1)
for (peak1, peak2), color in human_peaks.items():
plt.plot(wavelengths, gaussian_sensitivity(peak1, peak2, sigma_human, wavelengths), color=color, label=f'λ_max = {peak1} nm')
plt.title("Human Retinal Cone Sensitivity")
plt.ylabel("Relative Absorption")
plt.legend()
# Plot starling sensitivities
plt.subplot(2, 1, 2)
for (peak1,peak2), color in starling_peaks.items():
plt.plot(wavelengths, gaussian_sensitivity(peak1, peak2, sigma_starling, wavelengths), color=color, label=f'λ_max = {peak1} nm')
plt.title("European Starling Retinal Cone Sensitivity")
plt.xlabel("Wavelength (nm)")
plt.ylabel("Relative Absorption")
plt.legend()
plt.tight_layout()
plt.savefig("retinal_cones.png")
'''
def bar(progress : float, width : int):
progress = min(1, max(0, progress))
whole_width = math.floor(progress * width)
remainder_width = (progress * width) % 1
part_width = math.floor(remainder_width * 8)
part_char = [" ", "", "", "", "", "", "", ""][part_width]
if (width - whole_width - 1) < 0:
part_char = ""
line = "\033[48;5;237m" + "" * whole_width + part_char + " " * (width - whole_width - 1) + "\033[40m"
return line
def human_activations(color_name, wavelengths, verbose=False):
raw_activations = {}
for (peak1,peak2), color in human_peaks.items():
raw_activations[color] = gaussian_sensitivity(peak1, peak2, sigma_human, wavelengths)
if verbose:
print(f"\033[1mHumans\033[m see {color_name}\033[m as:")
activations = []
for color,levels in raw_activations.items():
k = sum(levels)/sum(sum(l) for l in raw_activations.values())
activations.append(k)
if verbose:
print(f"{ANSI_COLORS[color]}{color}: \033[10G {k:%} \033[30G{bar(k, 30)}\033[m")
if verbose:
print("")
vec = np.array(activations)
return vec / np.linalg.norm(vec)
colored_purple = "".join(f"\033[38;2;255;78;0m{c}" if i % 2 == 0 else f"\033[38;2;0;146;255m{c}" for i,c in enumerate("purple")) + "\033[m"
colored_purple += " (\033[38;2;255;78;0m630nm\033[m & \033[38;2;0;146;255m465nm\033[m)"
human_activations("\033[38;5;177mviolet (384nm)\033[m", np.array([384]), verbose=True)
human_activations(colored_purple, np.array([630, 465]), verbose=True)
print("\nThey look the same to us!")
section_break()
def starling_activations(color_name, wavelengths, verbose=False):
raw_activations = {}
for (peak1,peak2), color in starling_peaks.items():
raw_activations[color] = gaussian_sensitivity(peak1, peak2, sigma_starling, wavelengths)
if verbose:
print(f"\033[1mStarlings\033[m see {color_name} as:")
activations = []
for color,levels in raw_activations.items():
k = sum(levels)/sum(sum(l) for l in raw_activations.values())
activations.append(k)
if verbose:
print(f"{ANSI_COLORS[color]}{color}: \033[10G {k:%} \033[30G{bar(k, 30)}\033[m")
if verbose:
print("")
vec = np.array(activations)
return vec / np.linalg.norm(vec)
starling_activations("\033[38;5;177mviolet (384nm)\033[m", np.array([384]), verbose=True)
starling_purple = starling_activations(colored_purple, np.array([630, 465]), verbose=True)
print("\nThey look completely differe to a starling!")
section_break()
print("...But what pure wavelength looks like purple?")
closest_wavelength = None
best_dist = None
for wavelength in range(100,700,1):
activations = starling_activations("???", np.array([wavelength]), verbose=False)
# dist = np.linalg.norm(starling_purple - activations)
dist = np.dot(starling_purple, activations)
if closest_wavelength is None or dist > best_dist:
closest_wavelength, best_dist = wavelength, dist
#print(f"\033[48;2;{r};{g};{b}m Scanning: {closest_wavelength}nm... \033[m dist = {dist}", end="\033[K\n", flush=True)
section_break()
color = wavelength_to_ansi(closest_wavelength)
print(f"{color}\033[30m WINNER: {closest_wavelength}nm! (blue) \033[m\n\n")
starling_activations(f"{color}blue ({closest_wavelength}nm)\033[m", np.array([closest_wavelength]), verbose=True)
print(f"Which looks more like {colored_purple} than any other pure wavelength!")
# import subprocess
# subprocess.run(["sxiv", "retinal_cones.png"])
# plt.show()