2024-08-18 13:51:25 -07:00
|
|
|
# Nums
|
|
|
|
|
|
|
|
Tomo has two floating point number types: `Num` (64-bit, AKA `double`) and
|
|
|
|
`Num32` (32-bit, AKA `float`). Num literals can have a decimal point (e.g.
|
|
|
|
`5.`), a scientific notation suffix (e.g. `1e8`) or a percent sign. Numbers
|
|
|
|
that end in a percent sign are divided by 100 at compile time (i.e. `5% ==
|
2024-08-19 09:46:01 -07:00
|
|
|
0.05`). Numbers can also use the `deg` suffix to represent degrees, which
|
|
|
|
are converted to radians at compile time (i.e. `180deg == Nums.PI`).
|
2024-08-18 13:51:25 -07:00
|
|
|
|
|
|
|
Nums support the standard math operations (`x+y`, `x-y`, `x*y`, `x/y`) as well as
|
|
|
|
powers/exponentiation (`x^y`) and modulus (`x mod y` and `x mod1 y`).
|
|
|
|
|
2024-11-05 12:18:32 -08:00
|
|
|
32-bit numbers can be constructed using the type name: `Num32(123.456)`.
|
|
|
|
|
2024-11-25 12:57:56 -08:00
|
|
|
## NaN
|
|
|
|
|
|
|
|
IEEE-754 floating point numbers define a concept call `NaN` (Not a Number),
|
|
|
|
which is the result value used to signal various operations (e.g. `0/0`) that
|
|
|
|
have no mathematically defined result value. NaNs are implemented at the
|
|
|
|
hardware level and propagate through floating point operations. This allows you
|
|
|
|
to perform many chained operations on the assumption that it's unlikely to have
|
|
|
|
NaN values, and only perform checks at the end of the chain of operations,
|
|
|
|
instead of performing checks after each operation. Unfortunately, it's also
|
|
|
|
easy to forget to perform any checks at all because most type systems don't
|
|
|
|
differentiate between possibly-NaN values and definitely-not-NaN values.
|
|
|
|
|
|
|
|
Tomo has a separate concept for expressing the lack of a defined value:
|
|
|
|
optional types. Consequently, Tomo has merged these two concepts, so `NaN` is
|
2024-12-07 13:04:25 -08:00
|
|
|
called `none` and has the type `Num?` or `Num32?`. In this way, it's no
|
2024-11-25 12:57:56 -08:00
|
|
|
different from optional integers or optional arrays. This means that if a
|
|
|
|
variable has type `Num`, it is guaranteed to not hold a NaN value. This also
|
|
|
|
means that operations which may produce NaN values have a result type of
|
|
|
|
`Num?`. For example, division can take two non-NaN values and return a result
|
|
|
|
that is NaN (zero divided by zero). Similarly, multiplication can produce NaN
|
|
|
|
values (zero times infinity), and many math functions like `sqrt()` can return
|
|
|
|
NaN for some inputs.
|
|
|
|
|
|
|
|
Unfortunately, one of the big downsides of optional types is that explicit
|
2024-12-07 13:04:25 -08:00
|
|
|
`none` handling can be very verbose. To make Nums actually usable, Tomo applies
|
|
|
|
very liberal use of type coercion and implicit `none` checks when values are
|
|
|
|
required to be non-none. Here are a few examples:
|
2024-11-25 12:57:56 -08:00
|
|
|
|
|
|
|
```tomo
|
|
|
|
>> x := 0.0
|
|
|
|
= 0 : Num
|
|
|
|
|
|
|
|
y := 1.0
|
|
|
|
|
2024-12-07 13:04:25 -08:00
|
|
|
# Division might produce none:
|
2024-11-25 12:57:56 -08:00
|
|
|
>> x / y
|
|
|
|
= 0 : Num?
|
|
|
|
>> x / x
|
2024-12-07 13:04:25 -08:00
|
|
|
= none : Num?
|
2024-11-25 12:57:56 -08:00
|
|
|
|
2024-12-07 13:04:25 -08:00
|
|
|
# Optional types and none values propagate:
|
2024-11-25 12:57:56 -08:00
|
|
|
>> x/y + 1 + 2
|
|
|
|
= 3 : Num?
|
|
|
|
>> x/x + 1 + 2
|
2024-12-07 13:04:25 -08:00
|
|
|
= none : Num?
|
2024-11-25 12:57:56 -08:00
|
|
|
|
|
|
|
# Optional Nums can be handled explicitly using `or` and `!`:
|
|
|
|
>> x/x or -123
|
|
|
|
= -123 : Num
|
|
|
|
|
|
|
|
# This would raise a runtime error if `x` and `y` were zero:
|
|
|
|
>> (x/y)!
|
|
|
|
= 0 : Num
|
|
|
|
|
2024-12-07 13:04:25 -08:00
|
|
|
# Assigning to a non-optional variable will do an implicit check for none and
|
|
|
|
# raise a runtime error if the value is none, essentially the same as an
|
2024-11-25 12:57:56 -08:00
|
|
|
# implicit `!`:
|
|
|
|
x = x/y
|
|
|
|
|
|
|
|
func doop(x:Num -> Num):
|
|
|
|
# If a function's return type is non-optional and an optional value is
|
2024-12-07 13:04:25 -08:00
|
|
|
# used in a return statement, an implicit none check will be inserted and
|
|
|
|
# will error if the value is none:
|
2024-11-25 12:57:56 -08:00
|
|
|
return x / 2
|
|
|
|
|
2024-12-07 13:04:25 -08:00
|
|
|
# Function arguments are also implicitly checked for none if the given value
|
2024-11-25 12:57:56 -08:00
|
|
|
# is optional and the function needs a non-optional value:
|
|
|
|
>> doop(x/y)
|
|
|
|
= 0 : Num
|
|
|
|
```
|
|
|
|
|
|
|
|
Hopefully the end result of this system is one where users can take advantage
|
|
|
|
of the performance benefits of hardware NaN propagation, while still having the
|
|
|
|
compiler enforce checking for undefined values. Users who don't want automatic
|
|
|
|
NaN-checking can use optional types and explicit checks where necessary. By
|
|
|
|
default, automatic NaN-checking happens at interface boundaries (function
|
|
|
|
arguments, return values, and variable assignments), so NaN values should be
|
|
|
|
caught early when an error message would have helpful context, while
|
|
|
|
eliminating conditional branching inside of compound math expressions. Users
|
|
|
|
should also be able to write code that can safely assume that all values
|
|
|
|
provided are not NaN.
|
2024-08-18 13:51:25 -07:00
|
|
|
|
|
|
|
## Constants
|
|
|
|
|
|
|
|
- **`1_PI`**: \( \frac{1}{\pi} \)
|
|
|
|
- **`2_PI`**: \( 2 \times \pi \)
|
|
|
|
- **`2_SQRTPI`**: \( 2 \times \sqrt{\pi} \)
|
|
|
|
- **`E`**: Base of natural logarithms (\( e \))
|
|
|
|
- **`INF`**: Positive infinity
|
|
|
|
- **`LN10`**: Natural logarithm of 10
|
|
|
|
- **`LN2`**: Natural logarithm of 2
|
|
|
|
- **`LOG2E`**: Logarithm base 2 of \( e \)
|
|
|
|
- **`PI`**: Pi (\( \pi \))
|
|
|
|
- **`PI_2`**: \( \frac{\pi}{2} \)
|
|
|
|
- **`PI_4`**: \( \frac{\pi}{4} \)
|
|
|
|
- **`SQRT1_2`**: \( \sqrt{\frac{1}{2}} \)
|
|
|
|
- **`SQRT2`**: \( \sqrt{2} \)
|
|
|
|
- **`TAU`**: Tau (\( 2 \times \pi \))
|
|
|
|
|
|
|
|
## Functions
|
|
|
|
|
2024-11-25 12:57:56 -08:00
|
|
|
Each Num type has its own version of the following functions. Functions can be
|
|
|
|
called either on the type itself: `Num.sqrt(x)` or as a method call:
|
|
|
|
`x:sqrt()`. Method call syntax is preferred.
|
|
|
|
|
|
|
|
---
|
|
|
|
|
2025-03-04 21:22:40 -08:00
|
|
|
- [`func abs(n: Num -> Num)`](#abs)
|
|
|
|
- [`func acos(x: Num -> Num)`](#acos)
|
|
|
|
- [`func acosh(x: Num -> Num)`](#acosh)
|
|
|
|
- [`func asin(x: Num -> Num)`](#asin)
|
|
|
|
- [`func asinh(x: Num -> Num)`](#asinh)
|
|
|
|
- [`func atan(x: Num -> Num)`](#atan)
|
|
|
|
- [`func atan2(x: Num, y: Num -> Num)`](#atan2)
|
|
|
|
- [`func atanh(x: Num -> Num)`](#atanh)
|
|
|
|
- [`func cbrt(x: Num -> Num)`](#cbrt)
|
|
|
|
- [`func ceil(x: Num -> Num)`](#ceil)
|
2025-03-24 11:56:11 -07:00
|
|
|
- [`func clamped(x, low, high: Num -> Num)`](#clamped)
|
2025-03-04 21:22:40 -08:00
|
|
|
- [`func copysign(x: Num, y: Num -> Num)`](#copysign)
|
|
|
|
- [`func cos(x: Num -> Num)`](#cos)
|
|
|
|
- [`func cosh(x: Num -> Num)`](#cosh)
|
|
|
|
- [`func erf(x: Num -> Num)`](#erf)
|
|
|
|
- [`func erfc(x: Num -> Num)`](#erfc)
|
|
|
|
- [`func exp(x: Num -> Num)`](#exp)
|
|
|
|
- [`func exp2(x: Num -> Num)`](#exp2)
|
|
|
|
- [`func expm1(x: Num -> Num)`](#expm1)
|
|
|
|
- [`func fdim(x: Num, y: Num -> Num)`](#fdim)
|
|
|
|
- [`func floor(x: Num -> Num)`](#floor)
|
|
|
|
- [`func format(n: Num, precision: Int = 0 -> Text)`](#format)
|
|
|
|
- [`func hypot(x: Num, y: Num -> Num)`](#hypot)
|
|
|
|
- [`func isfinite(n: Num -> Bool)`](#isfinite)
|
|
|
|
- [`func isinf(n: Num -> Bool)`](#isinf)
|
|
|
|
- [`func j0(x: Num -> Num)`](#j0)
|
|
|
|
- [`func j1(x: Num -> Num)`](#j1)
|
|
|
|
- [`func log(x: Num -> Num)`](#log)
|
|
|
|
- [`func log10(x: Num -> Num)`](#log10)
|
|
|
|
- [`func log1p(x: Num -> Num)`](#log1p)
|
|
|
|
- [`func log2(x: Num -> Num)`](#log2)
|
|
|
|
- [`func logb(x: Num -> Num)`](#logb)
|
|
|
|
- [`func mix(amount: Num, x: Num, y: Num -> Num)`](#mix)
|
|
|
|
- [`func near(x: Num, y: Num, ratio: Num = 1e-9, min_epsilon: Num = 1e-9 -> Bool)`](#near)
|
|
|
|
- [`func nextafter(x: Num, y: Num -> Num)`](#nextafter)
|
|
|
|
- [`func parse(text: Text -> Num?)`](#parse)
|
2025-03-24 11:56:11 -07:00
|
|
|
- [`func percent(n: Num -> Text)`](#percent)
|
2025-03-04 21:22:40 -08:00
|
|
|
- [`func rint(x: Num -> Num)`](#rint)
|
|
|
|
- [`func round(x: Num -> Num)`](#round)
|
|
|
|
- [`func scientific(n: Num, precision: Int = 0 -> Text)`](#scientific)
|
|
|
|
- [`func significand(x: Num -> Num)`](#significand)
|
|
|
|
- [`func sin(x: Num -> Num)`](#sin)
|
|
|
|
- [`func sinh(x: Num -> Num)`](#sinh)
|
|
|
|
- [`func sqrt(x: Num -> Num)`](#sqrt)
|
|
|
|
- [`func tan(x: Num -> Num)`](#tan)
|
|
|
|
- [`func tanh(x: Num -> Num)`](#tanh)
|
|
|
|
- [`func tgamma(x: Num -> Num)`](#tgamma)
|
|
|
|
- [`func trunc(x: Num -> Num)`](#trunc)
|
|
|
|
- [`func y0(x: Num -> Num)`](#y0)
|
|
|
|
- [`func y1(x: Num -> Num)`](#y1)
|
2025-03-04 21:21:30 -08:00
|
|
|
|
2024-08-18 13:51:25 -07:00
|
|
|
### `abs`
|
|
|
|
Calculates the absolute value of a number.
|
|
|
|
|
|
|
|
```tomo
|
2024-10-09 10:48:45 -07:00
|
|
|
func abs(n: Num -> Num)
|
2024-08-18 13:51:25 -07:00
|
|
|
```
|
|
|
|
|
|
|
|
- `n`: The number whose absolute value is to be computed.
|
|
|
|
|
|
|
|
**Returns:**
|
|
|
|
The absolute value of `n`.
|
|
|
|
|
|
|
|
**Example:**
|
|
|
|
```tomo
|
|
|
|
>> -3.5:abs()
|
|
|
|
= 3.5
|
|
|
|
```
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
### `acos`
|
|
|
|
Computes the arc cosine of a number.
|
|
|
|
|
|
|
|
```tomo
|
2024-10-09 10:48:45 -07:00
|
|
|
func acos(x: Num -> Num)
|
2024-08-18 13:51:25 -07:00
|
|
|
```
|
|
|
|
|
|
|
|
- `x`: The number for which the arc cosine is to be calculated.
|
|
|
|
|
|
|
|
**Returns:**
|
|
|
|
The arc cosine of `x` in radians.
|
|
|
|
|
|
|
|
**Example:**
|
|
|
|
```tomo
|
|
|
|
>> 0.0:acos() // -> (π/2)
|
|
|
|
= 1.5708
|
|
|
|
```
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
### `acosh`
|
|
|
|
Computes the inverse hyperbolic cosine of a number.
|
|
|
|
|
|
|
|
```tomo
|
2024-10-09 10:48:45 -07:00
|
|
|
func acosh(x: Num -> Num)
|
2024-08-18 13:51:25 -07:00
|
|
|
```
|
|
|
|
|
|
|
|
- `x`: The number for which the inverse hyperbolic cosine is to be calculated.
|
|
|
|
|
|
|
|
**Returns:**
|
|
|
|
The inverse hyperbolic cosine of `x`.
|
|
|
|
|
|
|
|
**Example:**
|
|
|
|
```tomo
|
|
|
|
>> 1.0:acosh()
|
|
|
|
= 0
|
|
|
|
```
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
### `asin`
|
|
|
|
Computes the arc sine of a number.
|
|
|
|
|
|
|
|
```tomo
|
2024-10-09 10:48:45 -07:00
|
|
|
func asin(x: Num -> Num)
|
2024-08-18 13:51:25 -07:00
|
|
|
```
|
|
|
|
|
|
|
|
- `x`: The number for which the arc sine is to be calculated.
|
|
|
|
|
|
|
|
**Returns:**
|
|
|
|
The arc sine of `x` in radians.
|
|
|
|
|
|
|
|
**Example:**
|
|
|
|
```tomo
|
|
|
|
>> 0.5:asin() // -> (π/6)
|
|
|
|
= 0.5236
|
|
|
|
```
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
### `asinh`
|
|
|
|
Computes the inverse hyperbolic sine of a number.
|
|
|
|
|
|
|
|
```tomo
|
2024-10-09 10:48:45 -07:00
|
|
|
func asinh(x: Num -> Num)
|
2024-08-18 13:51:25 -07:00
|
|
|
```
|
|
|
|
|
|
|
|
- `x`: The number for which the inverse hyperbolic sine is to be calculated.
|
|
|
|
|
|
|
|
**Returns:**
|
|
|
|
The inverse hyperbolic sine of `x`.
|
|
|
|
|
|
|
|
**Example:**
|
|
|
|
```tomo
|
|
|
|
>> 0.0:asinh()
|
|
|
|
= 0
|
|
|
|
```
|
|
|
|
|
|
|
|
---
|
|
|
|
|
2025-03-04 21:21:30 -08:00
|
|
|
### `atan`
|
|
|
|
Computes the arc tangent of a number.
|
2024-08-18 13:51:25 -07:00
|
|
|
|
|
|
|
```tomo
|
2025-03-04 21:21:30 -08:00
|
|
|
func atan(x: Num -> Num)
|
2024-08-18 13:51:25 -07:00
|
|
|
```
|
|
|
|
|
2025-03-04 21:21:30 -08:00
|
|
|
- `x`: The number for which the arc tangent is to be calculated.
|
2024-08-18 13:51:25 -07:00
|
|
|
|
|
|
|
**Returns:**
|
2025-03-04 21:21:30 -08:00
|
|
|
The arc tangent of `x` in radians.
|
2024-08-18 13:51:25 -07:00
|
|
|
|
|
|
|
**Example:**
|
|
|
|
```tomo
|
2025-03-04 21:21:30 -08:00
|
|
|
>> 1.0:atan() // -> (π/4)
|
2024-08-18 13:51:25 -07:00
|
|
|
= 0.7854
|
|
|
|
```
|
|
|
|
|
|
|
|
---
|
|
|
|
|
2025-03-04 21:21:30 -08:00
|
|
|
### `atan2`
|
|
|
|
Computes the arc tangent of the quotient of two numbers.
|
2024-08-18 13:51:25 -07:00
|
|
|
|
|
|
|
```tomo
|
2025-03-04 21:21:30 -08:00
|
|
|
func atan2(x: Num, y: Num -> Num)
|
2024-08-18 13:51:25 -07:00
|
|
|
```
|
|
|
|
|
2025-03-04 21:21:30 -08:00
|
|
|
- `x`: The numerator.
|
|
|
|
- `y`: The denominator.
|
2024-08-18 13:51:25 -07:00
|
|
|
|
|
|
|
**Returns:**
|
2025-03-04 21:21:30 -08:00
|
|
|
The arc tangent of `x/y` in radians.
|
2024-08-18 13:51:25 -07:00
|
|
|
|
|
|
|
**Example:**
|
|
|
|
```tomo
|
2025-03-04 21:21:30 -08:00
|
|
|
>> Num.atan2(1, 1) // -> (π/4)
|
2024-08-18 13:51:25 -07:00
|
|
|
= 0.7854
|
|
|
|
```
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
### `atanh`
|
|
|
|
Computes the inverse hyperbolic tangent of a number.
|
|
|
|
|
|
|
|
```tomo
|
2024-10-09 10:48:45 -07:00
|
|
|
func atanh(x: Num -> Num)
|
2024-08-18 13:51:25 -07:00
|
|
|
```
|
|
|
|
|
|
|
|
- `x`: The number for which the inverse hyperbolic tangent is to be calculated.
|
|
|
|
|
|
|
|
**Returns:**
|
|
|
|
The inverse hyperbolic tangent of `x`.
|
|
|
|
|
|
|
|
**Example:**
|
|
|
|
```tomo
|
|
|
|
>> 0.5:atanh()
|
|
|
|
= 0.5493
|
|
|
|
```
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
### `cbrt`
|
|
|
|
Computes the cube root of a number.
|
|
|
|
|
|
|
|
```tomo
|
2024-10-09 10:48:45 -07:00
|
|
|
func cbrt(x: Num -> Num)
|
2024-08-18 13:51:25 -07:00
|
|
|
```
|
|
|
|
|
|
|
|
- `x`: The number for which the cube root is to be calculated.
|
|
|
|
|
|
|
|
**Returns:**
|
|
|
|
The cube root of `x`.
|
|
|
|
|
|
|
|
**Example:**
|
|
|
|
```tomo
|
|
|
|
>> 27.0:cbrt()
|
|
|
|
= 3
|
|
|
|
```
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
### `ceil`
|
|
|
|
Rounds a number up to the nearest integer.
|
|
|
|
|
|
|
|
```tomo
|
2024-10-09 10:48:45 -07:00
|
|
|
func ceil(x: Num -> Num)
|
2024-08-18 13:51:25 -07:00
|
|
|
```
|
|
|
|
|
|
|
|
- `x`: The number to be rounded up.
|
|
|
|
|
|
|
|
**Returns:**
|
|
|
|
The smallest integer greater than or equal to `x`.
|
|
|
|
|
|
|
|
**Example:**
|
|
|
|
```tomo
|
|
|
|
>> 3.2:ceil()
|
|
|
|
= 4
|
|
|
|
```
|
|
|
|
|
|
|
|
---
|
|
|
|
|
2025-03-04 21:21:30 -08:00
|
|
|
### `clamped`
|
|
|
|
Returns the given number clamped between two values so that it is within
|
|
|
|
that range.
|
|
|
|
|
|
|
|
```tomo
|
|
|
|
clamped(x, low, high: Num -> Num)
|
|
|
|
```
|
|
|
|
|
|
|
|
- `x`: The number to clamp.
|
|
|
|
- `low`: The lowest value the result can take.
|
|
|
|
- `high`: The highest value the result can take.
|
|
|
|
|
|
|
|
**Returns:**
|
|
|
|
The first argument clamped between the other two arguments.
|
|
|
|
|
|
|
|
**Example:**
|
|
|
|
```tomo
|
|
|
|
>> 2.5:clamped(5.5, 10.5)
|
|
|
|
= 5.5
|
|
|
|
```
|
|
|
|
|
|
|
|
---
|
|
|
|
|
2024-08-18 13:51:25 -07:00
|
|
|
### `copysign`
|
|
|
|
Copies the sign of one number to another.
|
|
|
|
|
|
|
|
```tomo
|
2024-10-09 10:48:45 -07:00
|
|
|
func copysign(x: Num, y: Num -> Num)
|
2024-08-18 13:51:25 -07:00
|
|
|
```
|
|
|
|
|
|
|
|
- `x`: The number whose magnitude will be copied.
|
|
|
|
- `y`: The number whose sign will be copied.
|
|
|
|
|
|
|
|
**Returns:**
|
|
|
|
A number with the magnitude of `x` and the sign of `y`.
|
|
|
|
|
|
|
|
**Example:**
|
|
|
|
```tomo
|
|
|
|
>> 3.0:copysign(-1)
|
|
|
|
= -3
|
|
|
|
```
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
### `cos`
|
|
|
|
Computes the cosine of a number (angle in radians).
|
|
|
|
|
|
|
|
```tomo
|
2024-10-09 10:48:45 -07:00
|
|
|
func cos(x: Num -> Num)
|
2024-08-18 13:51:25 -07:00
|
|
|
```
|
|
|
|
|
|
|
|
- `x`: The angle in radians.
|
|
|
|
|
|
|
|
**Returns:**
|
|
|
|
The cosine of `x`.
|
|
|
|
|
|
|
|
**Example:**
|
|
|
|
```tomo
|
|
|
|
>> 0.0:cos()
|
|
|
|
= 1
|
|
|
|
```
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
### `cosh`
|
|
|
|
Computes the hyperbolic cosine of a number.
|
|
|
|
|
|
|
|
```tomo
|
2024-10-09 10:48:45 -07:00
|
|
|
func cosh(x: Num -> Num)
|
2024-08-18 13:51:25 -07:00
|
|
|
```
|
|
|
|
|
|
|
|
- `x`: The number for which the hyperbolic cosine is to be calculated.
|
|
|
|
|
|
|
|
**Returns:**
|
|
|
|
The hyperbolic cosine of `x`.
|
|
|
|
|
|
|
|
**Example:**
|
|
|
|
```tomo
|
|
|
|
>> 0.0:cosh()
|
|
|
|
= 1
|
|
|
|
```
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
### `erf`
|
|
|
|
Computes the error function of a number.
|
|
|
|
|
|
|
|
```tomo
|
2024-10-09 10:48:45 -07:00
|
|
|
func erf(x: Num -> Num)
|
2024-08-18 13:51:25 -07:00
|
|
|
```
|
|
|
|
|
|
|
|
- `x`: The number for which the error function is to be calculated.
|
|
|
|
|
|
|
|
**Returns:**
|
|
|
|
The error function of `x`.
|
|
|
|
|
|
|
|
**Example:**
|
|
|
|
```tomo
|
|
|
|
>> 0.0:erf()
|
|
|
|
= 0
|
|
|
|
```
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
### `erfc`
|
|
|
|
Computes the complementary error function of a number.
|
|
|
|
|
|
|
|
```tomo
|
2024-10-09 10:48:45 -07:00
|
|
|
func erfc(x: Num -> Num)
|
2024-08-18 13:51:25 -07:00
|
|
|
```
|
|
|
|
|
|
|
|
- `x`: The number for which the complementary error function is to be calculated.
|
|
|
|
|
|
|
|
**Returns:**
|
|
|
|
The complementary error function of `x`.
|
|
|
|
|
|
|
|
**Example:**
|
|
|
|
```tomo
|
|
|
|
>> 0.0:erfc()
|
|
|
|
= 1
|
|
|
|
```
|
|
|
|
|
|
|
|
---
|
|
|
|
|
2025-03-04 21:21:30 -08:00
|
|
|
### `exp`
|
|
|
|
Computes the exponential function \( e^x \) for a number.
|
2024-08-18 13:51:25 -07:00
|
|
|
|
|
|
|
```tomo
|
2025-03-04 21:21:30 -08:00
|
|
|
func exp(x: Num -> Num)
|
2024-08-18 13:51:25 -07:00
|
|
|
```
|
|
|
|
|
|
|
|
- `x`: The exponent.
|
|
|
|
|
|
|
|
**Returns:**
|
2025-03-04 21:21:30 -08:00
|
|
|
The value of \( e^x \).
|
2024-08-18 13:51:25 -07:00
|
|
|
|
|
|
|
**Example:**
|
|
|
|
```tomo
|
2025-03-04 21:21:30 -08:00
|
|
|
>> 1.0:exp()
|
|
|
|
= 2.7183
|
2024-08-18 13:51:25 -07:00
|
|
|
```
|
|
|
|
|
|
|
|
---
|
|
|
|
|
2025-03-04 21:21:30 -08:00
|
|
|
### `exp2`
|
|
|
|
Computes \( 2^x \) for a number.
|
2024-08-18 13:51:25 -07:00
|
|
|
|
|
|
|
```tomo
|
2025-03-04 21:21:30 -08:00
|
|
|
func exp2(x: Num -> Num)
|
2024-08-18 13:51:25 -07:00
|
|
|
```
|
|
|
|
|
|
|
|
- `x`: The exponent.
|
|
|
|
|
|
|
|
**Returns:**
|
2025-03-04 21:21:30 -08:00
|
|
|
The value of \( 2^x \).
|
2024-08-18 13:51:25 -07:00
|
|
|
|
|
|
|
**Example:**
|
|
|
|
```tomo
|
2025-03-04 21:21:30 -08:00
|
|
|
>> 3.0:exp2()
|
|
|
|
= 8
|
2024-08-18 13:51:25 -07:00
|
|
|
```
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
### `expm1`
|
|
|
|
Computes \( e^x - 1 \) for a number.
|
|
|
|
|
|
|
|
```tomo
|
2024-10-09 10:48:45 -07:00
|
|
|
func expm1(x: Num -> Num)
|
2024-08-18 13:51:25 -07:00
|
|
|
```
|
|
|
|
|
|
|
|
- `x`: The exponent.
|
|
|
|
|
|
|
|
**Returns:**
|
|
|
|
The value of \( e^x - 1 \).
|
|
|
|
|
|
|
|
**Example:**
|
|
|
|
```tomo
|
|
|
|
>> 1.0:expm1()
|
|
|
|
= 1.7183
|
|
|
|
```
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
### `fdim`
|
|
|
|
Computes the positive difference between two numbers.
|
|
|
|
|
|
|
|
```tomo
|
2024-10-09 10:48:45 -07:00
|
|
|
func fdim(x: Num, y: Num -> Num)
|
2024-08-18 13:51:25 -07:00
|
|
|
```
|
|
|
|
|
|
|
|
- `x`: The first number.
|
|
|
|
- `y`: The second number.
|
|
|
|
|
|
|
|
**Returns:**
|
|
|
|
The positive difference \( \max(0, x - y) \).
|
|
|
|
|
|
|
|
**Example:**
|
|
|
|
```tomo
|
|
|
|
fd
|
|
|
|
|
|
|
|
>> 5.0:fdim(3)
|
|
|
|
= 2
|
|
|
|
```
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
### `floor`
|
|
|
|
Rounds a number down to the nearest integer.
|
|
|
|
|
|
|
|
```tomo
|
2024-10-09 10:48:45 -07:00
|
|
|
func floor(x: Num -> Num)
|
2024-08-18 13:51:25 -07:00
|
|
|
```
|
|
|
|
|
|
|
|
- `x`: The number to be rounded down.
|
|
|
|
|
|
|
|
**Returns:**
|
|
|
|
The largest integer less than or equal to `x`.
|
|
|
|
|
|
|
|
**Example:**
|
|
|
|
```tomo
|
|
|
|
>> 3.7:floor()
|
|
|
|
= 3
|
|
|
|
```
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
### `format`
|
2024-10-27 18:14:27 -07:00
|
|
|
Formats a number as a text with a specified precision.
|
2024-08-18 13:51:25 -07:00
|
|
|
|
|
|
|
```tomo
|
2024-10-09 10:48:45 -07:00
|
|
|
func format(n: Num, precision: Int = 0 -> Text)
|
2024-08-18 13:51:25 -07:00
|
|
|
```
|
|
|
|
|
|
|
|
- `n`: The number to be formatted.
|
|
|
|
- `precision`: The number of decimal places. Default is `0`.
|
|
|
|
|
|
|
|
**Returns:**
|
2024-10-27 18:14:27 -07:00
|
|
|
A text representation of the number with the specified precision.
|
2024-08-18 13:51:25 -07:00
|
|
|
|
|
|
|
**Example:**
|
|
|
|
```tomo
|
|
|
|
>> 3.14159:format(precision=2)
|
|
|
|
= "3.14"
|
|
|
|
```
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
### `hypot`
|
|
|
|
Computes the Euclidean norm, \( \sqrt{x^2 + y^2} \), of two numbers.
|
|
|
|
|
|
|
|
```tomo
|
2024-10-09 10:48:45 -07:00
|
|
|
func hypot(x: Num, y: Num -> Num)
|
2024-08-18 13:51:25 -07:00
|
|
|
```
|
|
|
|
|
|
|
|
- `x`: The first number.
|
|
|
|
- `y`: The second number.
|
|
|
|
|
|
|
|
**Returns:**
|
|
|
|
The Euclidean norm of `x` and `y`.
|
|
|
|
|
|
|
|
**Example:**
|
|
|
|
```tomo
|
|
|
|
>> Num.hypot(3, 4)
|
|
|
|
= 5
|
|
|
|
```
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
### `isfinite`
|
|
|
|
Checks if a number is finite.
|
|
|
|
|
|
|
|
```tomo
|
2024-10-09 10:48:45 -07:00
|
|
|
func isfinite(n: Num -> Bool)
|
2024-08-18 13:51:25 -07:00
|
|
|
```
|
|
|
|
|
|
|
|
- `n`: The number to be checked.
|
|
|
|
|
|
|
|
**Returns:**
|
|
|
|
`yes` if `n` is finite, `no` otherwise.
|
|
|
|
|
|
|
|
**Example:**
|
|
|
|
```tomo
|
|
|
|
>> 1.0:isfinite()
|
|
|
|
= yes
|
|
|
|
>> Num.INF:isfinite()
|
|
|
|
= no
|
|
|
|
```
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
### `isinf`
|
|
|
|
Checks if a number is infinite.
|
|
|
|
|
|
|
|
```tomo
|
2024-10-09 10:48:45 -07:00
|
|
|
func isinf(n: Num -> Bool)
|
2024-08-18 13:51:25 -07:00
|
|
|
```
|
|
|
|
|
|
|
|
- `n`: The number to be checked.
|
|
|
|
|
|
|
|
**Returns:**
|
|
|
|
`yes` if `n` is infinite, `no` otherwise.
|
|
|
|
|
|
|
|
**Example:**
|
|
|
|
```tomo
|
|
|
|
>> Num.INF:isinf()
|
|
|
|
= yes
|
|
|
|
>> 1.0:isinf()
|
|
|
|
= no
|
|
|
|
```
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
### `j0`
|
|
|
|
Computes the Bessel function of the first kind of order 0.
|
|
|
|
|
|
|
|
```tomo
|
2024-10-09 10:48:45 -07:00
|
|
|
func j0(x: Num -> Num)
|
2024-08-18 13:51:25 -07:00
|
|
|
```
|
|
|
|
|
|
|
|
- `x`: The number for which the Bessel function is to be calculated.
|
|
|
|
|
|
|
|
**Returns:**
|
|
|
|
The Bessel function of the first kind of order 0 of `x`.
|
|
|
|
|
|
|
|
**Example:**
|
|
|
|
```tomo
|
|
|
|
>> 0.0:j0()
|
|
|
|
= 1
|
|
|
|
```
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
### `j1`
|
|
|
|
Computes the Bessel function of the first kind of order 1.
|
|
|
|
|
|
|
|
```tomo
|
2024-10-09 10:48:45 -07:00
|
|
|
func j1(x: Num -> Num)
|
2024-08-18 13:51:25 -07:00
|
|
|
```
|
|
|
|
|
|
|
|
- `x`: The number for which the Bessel function is to be calculated.
|
|
|
|
|
|
|
|
**Returns:**
|
|
|
|
The Bessel function of the first kind of order 1 of `x`.
|
|
|
|
|
|
|
|
**Example:**
|
|
|
|
```tomo
|
|
|
|
>> 0.0:j1()
|
|
|
|
= 0
|
|
|
|
```
|
|
|
|
|
|
|
|
---
|
|
|
|
|
2025-03-04 21:21:30 -08:00
|
|
|
### `log`
|
|
|
|
Computes the natural logarithm (base \( e \)) of a number.
|
|
|
|
|
|
|
|
```tomo
|
|
|
|
func log(x: Num -> Num)
|
|
|
|
```
|
|
|
|
|
|
|
|
- `x`: The number for which the natural logarithm is to be calculated.
|
|
|
|
|
|
|
|
**Returns:**
|
|
|
|
The natural logarithm of `x`.
|
|
|
|
|
|
|
|
**Example:**
|
|
|
|
```tomo
|
|
|
|
>> Num.E:log()
|
|
|
|
= 1
|
|
|
|
```
|
|
|
|
|
|
|
|
---
|
|
|
|
|
2024-08-18 13:51:25 -07:00
|
|
|
### `log10`
|
|
|
|
Computes the base-10 logarithm of a number.
|
|
|
|
|
|
|
|
```tomo
|
2024-10-09 10:48:45 -07:00
|
|
|
func log10(x: Num -> Num)
|
2024-08-18 13:51:25 -07:00
|
|
|
```
|
|
|
|
|
|
|
|
- `x`: The number for which the base-10 logarithm is to be calculated.
|
|
|
|
|
|
|
|
**Returns:**
|
|
|
|
The base-10 logarithm of `x`.
|
|
|
|
|
|
|
|
**Example:**
|
|
|
|
```tomo
|
|
|
|
>> 100.0:log10()
|
|
|
|
= 2
|
|
|
|
```
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
### `log1p`
|
|
|
|
Computes \( \log(1 + x) \) for a number.
|
|
|
|
|
|
|
|
```tomo
|
2024-10-09 10:48:45 -07:00
|
|
|
func log1p(x: Num -> Num)
|
2024-08-18 13:51:25 -07:00
|
|
|
```
|
|
|
|
|
|
|
|
- `x`: The number for which \( \log(1 + x) \) is to be calculated.
|
|
|
|
|
|
|
|
**Returns:**
|
|
|
|
The value of \( \log(1 + x) \).
|
|
|
|
|
|
|
|
**Example:**
|
|
|
|
```tomo
|
|
|
|
>> 1.0:log1p()
|
|
|
|
= 0.6931
|
|
|
|
```
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
### `log2`
|
|
|
|
Computes the base-2 logarithm of a number.
|
|
|
|
|
|
|
|
```tomo
|
2024-10-09 10:48:45 -07:00
|
|
|
func log2(x: Num -> Num)
|
2024-08-18 13:51:25 -07:00
|
|
|
```
|
|
|
|
|
|
|
|
- `x`: The number for which the base-2 logarithm is to be calculated.
|
|
|
|
|
|
|
|
**Returns:**
|
|
|
|
The base-2 logarithm of `x`.
|
|
|
|
|
|
|
|
**Example:**
|
|
|
|
```tomo
|
|
|
|
>> 8.0:log2()
|
|
|
|
= 3
|
|
|
|
```
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
### `logb`
|
|
|
|
Computes the binary exponent (base-2 logarithm) of a number.
|
|
|
|
|
|
|
|
```tomo
|
2024-10-09 10:48:45 -07:00
|
|
|
func logb(x: Num -> Num)
|
2024-08-18 13:51:25 -07:00
|
|
|
```
|
|
|
|
|
|
|
|
- `x`: The number for which the binary exponent is to be calculated.
|
|
|
|
|
|
|
|
**Returns:**
|
|
|
|
The binary exponent of `x`.
|
|
|
|
|
|
|
|
**Example:**
|
|
|
|
```tomo
|
|
|
|
>> 8.0:logb()
|
|
|
|
= 3
|
|
|
|
```
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
### `mix`
|
|
|
|
Interpolates between two numbers based on a given amount.
|
|
|
|
|
|
|
|
```tomo
|
2024-10-09 10:48:45 -07:00
|
|
|
func mix(amount: Num, x: Num, y: Num -> Num)
|
2024-08-18 13:51:25 -07:00
|
|
|
```
|
|
|
|
|
|
|
|
- `amount`: The interpolation factor (between `0` and `1`).
|
|
|
|
- `x`: The starting number.
|
|
|
|
- `y`: The ending number.
|
|
|
|
|
|
|
|
**Returns:**
|
|
|
|
The interpolated number between `x` and `y` based on `amount`.
|
|
|
|
|
|
|
|
**Example:**
|
|
|
|
```tomo
|
|
|
|
>> 0.5:mix(10, 20)
|
|
|
|
= 15
|
|
|
|
>> 0.25:mix(10, 20)
|
|
|
|
= 12.5
|
|
|
|
```
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
### `near`
|
|
|
|
Checks if two numbers are approximately equal within specified tolerances. If
|
|
|
|
two numbers are within an absolute difference or the ratio between the two is
|
|
|
|
small enough, they are considered near each other.
|
|
|
|
|
|
|
|
```tomo
|
2024-10-09 10:48:45 -07:00
|
|
|
func near(x: Num, y: Num, ratio: Num = 1e-9, min_epsilon: Num = 1e-9 -> Bool)
|
2024-08-18 13:51:25 -07:00
|
|
|
```
|
|
|
|
|
|
|
|
- `x`: The first number.
|
|
|
|
- `y`: The second number.
|
|
|
|
- `ratio`: The relative tolerance. Default is `1e-9`.
|
|
|
|
- `min_epsilon`: The absolute tolerance. Default is `1e-9`.
|
|
|
|
|
|
|
|
**Returns:**
|
|
|
|
`yes` if `x` and `y` are approximately equal within the specified tolerances, `no` otherwise.
|
|
|
|
|
|
|
|
**Example:**
|
|
|
|
```tomo
|
|
|
|
>> 1.0:near(1.000000001)
|
|
|
|
= yes
|
|
|
|
|
|
|
|
>> 100.0:near(110, ratio=0.1)
|
|
|
|
= yes
|
|
|
|
|
|
|
|
>> 5.0:near(5.1, min_epsilon=0.1)
|
|
|
|
= yes
|
|
|
|
```
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
### `nextafter`
|
|
|
|
Computes the next representable value after a given number towards a specified direction.
|
|
|
|
|
|
|
|
```tomo
|
2024-10-09 10:48:45 -07:00
|
|
|
func nextafter(x: Num, y: Num -> Num)
|
2024-08-18 13:51:25 -07:00
|
|
|
```
|
|
|
|
|
|
|
|
- `x`: The starting number.
|
|
|
|
- `y`: The direction towards which to find the next representable value.
|
|
|
|
|
|
|
|
**Returns:**
|
|
|
|
The next representable value after `x` in the direction of `y`.
|
|
|
|
|
|
|
|
**Example:**
|
|
|
|
```tomo
|
|
|
|
>> 1.0:nextafter(1.1)
|
|
|
|
= 1.0000000000000002
|
|
|
|
```
|
|
|
|
|
|
|
|
---
|
|
|
|
|
2025-03-04 21:21:30 -08:00
|
|
|
### `parse`
|
|
|
|
Converts a text representation of a number into a floating-point number.
|
|
|
|
|
|
|
|
```tomo
|
|
|
|
func parse(text: Text -> Num?)
|
|
|
|
```
|
|
|
|
|
|
|
|
- `text`: The text containing the number.
|
|
|
|
|
|
|
|
**Returns:**
|
|
|
|
The number represented by the text or `none` if the entire text can't be parsed
|
|
|
|
as a number.
|
|
|
|
|
|
|
|
**Example:**
|
|
|
|
```tomo
|
|
|
|
>> Num.parse("3.14")
|
|
|
|
= 3.14
|
|
|
|
>> Num.parse("1e3")
|
|
|
|
= 1000
|
|
|
|
```
|
|
|
|
|
|
|
|
---
|
|
|
|
|
2025-03-24 11:56:11 -07:00
|
|
|
### `percent`
|
|
|
|
Convert a number into a percentage text with a percent sign.
|
|
|
|
|
|
|
|
```tomo
|
|
|
|
func percent(n: Num, precision: Int = 0 -> Text)
|
|
|
|
```
|
|
|
|
|
|
|
|
- `n`: The number to be converted to a percent.
|
|
|
|
- `precision`: The number of decimal places. Default is `0`.
|
|
|
|
|
|
|
|
**Returns:**
|
|
|
|
A text representation of the number as a percentage with a percent sign.
|
|
|
|
|
|
|
|
**Example:**
|
|
|
|
```tomo
|
|
|
|
>> 0.5:percent()
|
|
|
|
= "50%"
|
|
|
|
>> (1./3.):percent(2)
|
|
|
|
= "33.33%"
|
|
|
|
```
|
|
|
|
|
|
|
|
---
|
|
|
|
|
2024-08-18 13:51:25 -07:00
|
|
|
### `rint`
|
|
|
|
Rounds a number to the nearest integer, with ties rounded to the nearest even integer.
|
|
|
|
|
|
|
|
```tomo
|
2024-10-09 10:48:45 -07:00
|
|
|
func rint(x: Num -> Num)
|
2024-08-18 13:51:25 -07:00
|
|
|
```
|
|
|
|
|
|
|
|
- `x`: The number to be rounded.
|
|
|
|
|
|
|
|
**Returns:**
|
|
|
|
The nearest integer value of `x`.
|
|
|
|
|
|
|
|
**Example:**
|
|
|
|
```tomo
|
|
|
|
>> 3.5:rint()
|
|
|
|
= 4
|
|
|
|
>> 2.5:rint()
|
|
|
|
= 2
|
|
|
|
```
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
### `round`
|
|
|
|
Rounds a number to the nearest whole number integer.
|
|
|
|
|
|
|
|
```tomo
|
2024-10-09 10:48:45 -07:00
|
|
|
func round(x: Num -> Num)
|
2024-08-18 13:51:25 -07:00
|
|
|
```
|
|
|
|
|
|
|
|
- `x`: The number to be rounded.
|
|
|
|
|
|
|
|
**Returns:**
|
|
|
|
The nearest integer value of `x`.
|
|
|
|
|
|
|
|
**Example:**
|
|
|
|
```tomo
|
|
|
|
>> 2.3:round()
|
|
|
|
= 2
|
|
|
|
>> 2.7:round()
|
|
|
|
= 3
|
|
|
|
```
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
### `scientific`
|
|
|
|
Formats a number in scientific notation with a specified precision.
|
|
|
|
|
|
|
|
```tomo
|
2024-10-09 10:48:45 -07:00
|
|
|
func scientific(n: Num, precision: Int = 0 -> Text)
|
2024-08-18 13:51:25 -07:00
|
|
|
```
|
|
|
|
|
|
|
|
- `n`: The number to be formatted.
|
|
|
|
- `precision`: The number of decimal places. Default is `0`.
|
|
|
|
|
|
|
|
**Returns:**
|
2024-10-27 18:14:27 -07:00
|
|
|
A text representation of the number in scientific notation with the specified precision.
|
2024-08-18 13:51:25 -07:00
|
|
|
|
|
|
|
**Example:**
|
|
|
|
```tomo
|
|
|
|
>> 12345.6789:scientific(precision=2)
|
|
|
|
= "1.23e+04"
|
|
|
|
```
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
### `significand`
|
|
|
|
Extracts the significand (or mantissa) of a number.
|
|
|
|
|
|
|
|
```tomo
|
2024-10-09 10:48:45 -07:00
|
|
|
func significand(x: Num -> Num)
|
2024-08-18 13:51:25 -07:00
|
|
|
```
|
|
|
|
|
|
|
|
- `x`: The number from which to extract the significand.
|
|
|
|
|
|
|
|
**Returns:**
|
|
|
|
The significand of `x`.
|
|
|
|
|
|
|
|
**Example:**
|
|
|
|
```tomo
|
|
|
|
>> 1234.567:significand()
|
|
|
|
= 0.1234567
|
|
|
|
```
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
### `sin`
|
|
|
|
Computes the sine of a number (angle in radians).
|
|
|
|
|
|
|
|
```tomo
|
2024-10-09 10:48:45 -07:00
|
|
|
func sin(x: Num -> Num)
|
2024-08-18 13:51:25 -07:00
|
|
|
```
|
|
|
|
|
|
|
|
- `x`: The angle in radians.
|
|
|
|
|
|
|
|
**Returns:**
|
|
|
|
The sine of `x`.
|
|
|
|
|
|
|
|
**Example:**
|
|
|
|
```tomo
|
|
|
|
>> 0.0:sin()
|
|
|
|
= 0
|
|
|
|
```
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
### `sinh`
|
|
|
|
Computes the hyperbolic sine of a number.
|
|
|
|
|
|
|
|
```tomo
|
2024-10-09 10:48:45 -07:00
|
|
|
func sinh(x: Num -> Num)
|
2024-08-18 13:51:25 -07:00
|
|
|
```
|
|
|
|
|
|
|
|
- `x`: The number for which the hyperbolic sine is to be calculated.
|
|
|
|
|
|
|
|
**Returns:**
|
|
|
|
The hyperbolic sine of `x`.
|
|
|
|
|
|
|
|
**Example:**
|
|
|
|
```tomo
|
|
|
|
>> 0.0:sinh()
|
|
|
|
= 0
|
|
|
|
```
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
### `sqrt`
|
|
|
|
Computes the square root of a number.
|
|
|
|
|
|
|
|
```tomo
|
2024-10-09 10:48:45 -07:00
|
|
|
func sqrt(x: Num -> Num)
|
2024-08-18 13:51:25 -07:00
|
|
|
```
|
|
|
|
|
|
|
|
- `x`: The number for which the square root is to be calculated.
|
|
|
|
|
|
|
|
**Returns:**
|
|
|
|
The square root of `x`.
|
|
|
|
|
|
|
|
**Example:**
|
|
|
|
```tomo
|
|
|
|
>> 16.0:sqrt()
|
|
|
|
= 4
|
|
|
|
```
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
### `tan`
|
|
|
|
Computes the tangent of a number (angle in radians).
|
|
|
|
|
|
|
|
```tomo
|
2024-10-09 10:48:45 -07:00
|
|
|
func tan(x: Num -> Num)
|
2024-08-18 13:51:25 -07:00
|
|
|
```
|
|
|
|
|
|
|
|
- `x`: The angle in radians.
|
|
|
|
|
|
|
|
**Returns:**
|
|
|
|
The tangent of `x`.
|
|
|
|
|
|
|
|
**Example:**
|
|
|
|
```tomo
|
|
|
|
>> 0.0:tan()
|
|
|
|
= 0
|
|
|
|
```
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
### `tanh`
|
|
|
|
Computes the hyperbolic tangent of a number.
|
|
|
|
|
|
|
|
```tomo
|
2024-10-09 10:48:45 -07:00
|
|
|
func tanh(x: Num -> Num)
|
2024-08-18 13:51:25 -07:00
|
|
|
```
|
|
|
|
|
|
|
|
- `x`: The number for which the hyperbolic tangent is to be calculated.
|
|
|
|
|
|
|
|
**Returns:**
|
|
|
|
The hyperbolic tangent of `x`.
|
|
|
|
|
|
|
|
**Example:**
|
|
|
|
```tomo
|
|
|
|
>> 0.0:tanh()
|
|
|
|
= 0
|
|
|
|
```
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
### `tgamma`
|
|
|
|
Computes the gamma function of a number.
|
|
|
|
|
|
|
|
```tomo
|
2024-10-09 10:48:45 -07:00
|
|
|
func tgamma(x: Num -> Num)
|
2024-08-18 13:51:25 -07:00
|
|
|
```
|
|
|
|
|
|
|
|
- `x`: The number for which the gamma function is to be calculated.
|
|
|
|
|
|
|
|
**Returns:**
|
|
|
|
The gamma function of `x`.
|
|
|
|
|
|
|
|
**Example:**
|
|
|
|
```tomo
|
|
|
|
>> 1.0:tgamma()
|
|
|
|
= 1
|
|
|
|
```
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
### `trunc`
|
|
|
|
Truncates a number to the nearest integer towards zero.
|
|
|
|
|
|
|
|
```tomo
|
2024-10-09 10:48:45 -07:00
|
|
|
func trunc(x: Num -> Num)
|
2024-08-18 13:51:25 -07:00
|
|
|
```
|
|
|
|
|
|
|
|
- `x`: The number to be truncated.
|
|
|
|
|
|
|
|
**Returns:**
|
|
|
|
The integer part of `x` towards zero.
|
|
|
|
|
|
|
|
**Example:**
|
|
|
|
```tomo
|
|
|
|
>> 3.7:trunc()
|
|
|
|
= 3
|
|
|
|
>> (-3.7):trunc()
|
|
|
|
= -3
|
|
|
|
```
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
### `y0`
|
|
|
|
Computes the Bessel function of the second kind of order 0.
|
|
|
|
|
|
|
|
```tomo
|
2024-10-09 10:48:45 -07:00
|
|
|
func y0(x: Num -> Num)
|
2024-08-18 13:51:25 -07:00
|
|
|
```
|
|
|
|
|
|
|
|
- `x`: The number for which the Bessel function is to be calculated.
|
|
|
|
|
|
|
|
**Returns:**
|
|
|
|
The Bessel function of the second kind of order 0 of `x`.
|
|
|
|
|
|
|
|
**Example:**
|
|
|
|
```tomo
|
|
|
|
>> 1.0:y0()
|
|
|
|
= -0.7652
|
|
|
|
```
|
|
|
|
|
|
|
|
---
|
|
|
|
|
|
|
|
### `y1`
|
|
|
|
Computes the Bessel function of the second kind of order 1.
|
|
|
|
|
|
|
|
```tomo
|
2024-10-09 10:48:45 -07:00
|
|
|
func y1(x: Num -> Num)
|
2024-08-18 13:51:25 -07:00
|
|
|
```
|
|
|
|
|
|
|
|
- `x`: The number for which the Bessel function is to be calculated.
|
|
|
|
|
|
|
|
**Returns:**
|
|
|
|
The Bessel function of the second kind of order 1 of `x`.
|
|
|
|
|
|
|
|
**Example:**
|
|
|
|
```tomo
|
|
|
|
>> 1.0:y1()
|
|
|
|
= 0.4401
|
|
|
|
```
|