tomo/examples/random/README.md

197 lines
4.9 KiB
Markdown
Raw Normal View History

2024-11-03 19:37:48 -08:00
# Random Number Generators (RNG)
This library provides an `RNG` type (Random Number Generator). This type
represents a self-contained piece of data that encapsulates the state of a
relatively fast and relatively secure pseudo-random number generator. The
current implementation is based on the [ChaCha20 stream
2024-11-03 19:37:48 -08:00
cipher,](https://en.wikipedia.org/wiki/Salsa20#ChaCha_variant) inspired by
[`arc4random` in OpenBSD.](https://man.openbsd.org/arc4random.3)
An `RNG` object can be used for deterministic, repeatable generation of
pseudorandom numbers (for example, to be used in a video game for creating
seeded levels). The default random number generator for Tomo is called `random`
and is, by default, initialized with random data from the operating system when
a Tomo program launches.
2025-03-04 21:11:18 -08:00
## RNG Functions
2024-11-03 19:37:48 -08:00
This documentation provides details on RNG functions available in the API.
Arrays also have some methods which use RNG values:
`array.shuffle()`, `array.shuffled()`, `array.random()`, and `array.sample()`.
2024-11-03 19:37:48 -08:00
2025-03-04 21:22:40 -08:00
- [`func bool(rng: RNG, p: Num = 0.5 -> Bool)`](#bool)
- [`func byte(rng: RNG -> Byte)`](#byte)
- [`func bytes(rng: RNG, count: Int -> [Byte])`](#bytes)
- [`func copy(rng: RNG -> RNG)`](#copy)
- [`func int(rng: RNG, min: Int, max: Int -> Int)`](#int`, `int64`, `int32`, `int16`, `int8)
- [`func new(seed: [Byte] = (/dev/urandom).read_bytes(40)! -> RNG)`](#new)
- [`func num(rng: RNG, min: Num = 0.0, max: Num = 1.0 -> Num)`](#num`, `num32)
-------------
2025-03-04 21:21:30 -08:00
2025-03-04 21:11:18 -08:00
### `bool`
2024-11-03 19:37:48 -08:00
Generate a random boolean value with a given probability.
```tomo
func bool(rng: RNG, p: Num = 0.5 -> Bool)
```
- `rng`: The random number generator to use.
- `p`: The probability of returning a `yes` value. Values less than zero and
`NaN` values are treated as equal to zero and values larger than zero are
treated as equal to one.
**Returns:**
`yes` with probability `p` and `no` with probability `1-p`.
**Example:**
```tomo
>> random.bool()
2024-11-03 19:37:48 -08:00
= no
>> random.bool(1.0)
2024-11-03 19:37:48 -08:00
= yes
```
---
2025-03-04 21:11:18 -08:00
### `byte`
2024-11-03 19:37:48 -08:00
Generate a random byte with uniform probability.
```tomo
func byte(rng: RNG -> Byte)
```
- `rng`: The random number generator to use.
**Returns:**
A random byte (0-255).
**Example:**
```tomo
>> random.byte()
2024-11-03 19:37:48 -08:00
= 103[B]
```
---
2025-03-04 21:11:18 -08:00
### `bytes`
2024-11-03 19:37:48 -08:00
Generate an array of uniformly random bytes with the given length.
```tomo
func bytes(rng: RNG, count: Int -> [Byte])
```
- `rng`: The random number generator to use.
- `count`: The number of random bytes to return.
**Returns:**
An array of length `count` random bytes with uniform random distribution (0-255).
**Example:**
```tomo
>> random.bytes(4)
2024-11-03 19:37:48 -08:00
= [135[B], 169[B], 103[B], 212[B]]
```
---
2025-03-04 21:11:18 -08:00
### `copy`
2024-11-03 19:37:48 -08:00
Return a copy of a random number generator. This copy will be a parallel version of
the given RNG with its own internal state.
```tomo
func copy(rng: RNG -> RNG)
```
- `rng`: The random number generator to copy.
**Returns:**
A copy of the given RNG.
**Example:**
```tomo
>> rng := RNG.new([])
>> copy := rng.copy()
2024-11-03 19:37:48 -08:00
>> rng.bytes(10)
2024-11-03 19:37:48 -08:00
= [224[B], 102[B], 190[B], 59[B], 251[B], 50[B], 217[B], 170[B], 15[B], 221[B]]
# The copy runs in parallel to the original RNG:
>> copy.bytes(10)
2024-11-03 19:37:48 -08:00
= [224[B], 102[B], 190[B], 59[B], 251[B], 50[B], 217[B], 170[B], 15[B], 221[B]]
```
---
2025-03-04 21:11:18 -08:00
### `int`, `int64`, `int32`, `int16`, `int8`
2024-11-03 19:37:48 -08:00
Generate a random integer value with the given range.
```tomo
func int(rng: RNG, min: Int, max: Int -> Int)
func int64(rng: RNG, min: Int64 = Int64.min, max: Int64 = Int64.max -> Int)
func int32(rng: RNG, min: Int32 = Int32.min, max: Int32 = Int32.max -> Int)
func int16(rng: RNG, min: Int16 = Int16.min, max: Int16 = Int16.max -> Int)
func int8(rng: RNG, min: Int8 = Int8.min, max: Int8 = Int8.max -> Int)
```
- `rng`: The random number generator to use.
- `min`: The minimum value to be returned.
- `max`: The maximum value to be returned.
**Returns:**
An integer uniformly chosen from the range `[min, max]` (inclusive). If `min`
is greater than `max`, an error will be raised.
**Example:**
```tomo
>> random.int(1, 10)
2024-11-03 19:37:48 -08:00
= 8
```
---
2025-03-04 21:11:18 -08:00
### `new`
2024-11-03 19:37:48 -08:00
Return a new random number generator.
```tomo
func new(seed: [Byte] = (/dev/urandom).read_bytes(40)! -> RNG)
2024-11-03 19:37:48 -08:00
```
- `seed`: The seed use for the random number generator. A seed length of 40
bytes is recommended. Seed lengths of less than 40 bytes are padded with
zeroes.
**Returns:**
A new random number generator.
**Example:**
```tomo
>> my_rng := RNG.new([1[B], 2[B], 3[B], 4[B]])
>> my_rng.bool()
2024-11-03 19:37:48 -08:00
= yes
```
---
2025-03-04 21:11:18 -08:00
### `num`, `num32`
2024-11-03 19:37:48 -08:00
Generate a random floating point value with the given range.
```tomo
func num(rng: RNG, min: Num = 0.0, max: Num = 1.0 -> Int)
func num32(rng: RNG, min: Num = 0.0_f32, max: Num = 1.0_f32 -> Int)
```
- `rng`: The random number generator to use.
- `min`: The minimum value to be returned.
- `max`: The maximum value to be returned.
**Returns:**
A floating point number uniformly chosen from the range `[min, max]`
(inclusive). If `min` is greater than `max`, an error will be raised.
**Example:**
```tomo
>> random.num(1, 10)
2024-11-03 19:37:48 -08:00
= 9.512830439975572
```