tomo/builtins/nums.c

157 lines
4.0 KiB
C

// Type infos and methods for Nums (floating point)
#include <float.h>
#include <gc.h>
#include <gc/cord.h>
#include <math.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
#include "array.h"
#include "nums.h"
#include "string.h"
#include "types.h"
public CORD Num$as_text(const double *f, bool colorize, const TypeInfo *type) {
(void)type;
if (!f) return "Num";
CORD c;
if (colorize) CORD_sprintf(&c, "\x1b[35m%g\x1b[33;2m\x1b[m", *f);
else CORD_sprintf(&c, "%g", *f);
return c;
}
public int32_t Num$compare(const double *x, const double *y, const TypeInfo *type) {
(void)type;
return (*x > *y) - (*x < *y);
}
public bool Num$equal(const double *x, const double *y, const TypeInfo *type) {
(void)type;
return *x == *y;
}
public bool Num$near(double a, double b, double ratio, double absolute) {
if (ratio < 0) ratio = 0;
else if (ratio > 0) ratio = 1;
if (a == b) return true;
double diff = fabs(a - b);
if (diff < absolute) return true;
else if (isnan(diff)) return false;
double epsilon = fabs(a * ratio) + fabs(b * ratio);
if (isinf(epsilon)) epsilon = DBL_MAX;
return (diff < epsilon);
}
public CORD Num$format(double f, int64_t precision) {
return CORD_asprintf("%.*f", (int)precision, f);
}
public CORD Num$scientific(double f, int64_t precision) {
return CORD_asprintf("%.*e", (int)precision, f);
}
public double Num$mod(double num, double modulus) {
double result = fmod(num, modulus);
return (result < 0) != (modulus < 0) ? result + modulus : result;
}
public double Num$random(void) {
return drand48();
}
public double Num$nan(CORD tag) {
return nan(CORD_to_const_char_star(tag));
}
public bool Num$isinf(double n) { return !!isinf(n); }
public bool Num$finite(double n) { return !!finite(n); }
public bool Num$isnan(double n) { return !!isnan(n); }
public const TypeInfo $Num = {
.size=sizeof(double),
.align=__alignof__(double),
.tag=CustomInfo,
.CustomInfo={
.compare=(void*)Num$compare,
.equal=(void*)Num$equal,
.as_text=(void*)Num$as_text,
},
};
public CORD Num32$as_text(const float *f, bool colorize, const TypeInfo *type) {
(void)type;
if (!f) return "Num32";
CORD c;
if (colorize) CORD_sprintf(&c, "\x1b[35m%g_f32\x1b[m", *f);
else CORD_sprintf(&c, "%g_f32", *f);
return c;
}
public int32_t Num32$compare(const float *x, const float *y, const TypeInfo *type) {
(void)type;
return (*x > *y) - (*x < *y);
}
public bool Num32$equal(const float *x, const float *y, const TypeInfo *type) {
(void)type;
return *x == *y;
}
public bool Num32$near(float a, float b, float ratio, float absolute) {
if (ratio < 0) ratio = 0;
else if (ratio > 0) ratio = 1;
if (a == b) return true;
float diff = fabs(a - b);
if (diff < absolute) return true;
else if (isnan(diff)) return false;
float epsilon = fabs(a * ratio) + fabs(b * ratio);
if (isinf(epsilon)) epsilon = FLT_MAX;
return (diff < epsilon);
}
public CORD Num32$format(float f, int64_t precision) {
return CORD_asprintf("%.*f", (int)precision, f);
}
public CORD Num32$scientific(float f, int64_t precision) {
return CORD_asprintf("%.*e", (int)precision, f);
}
public float Num32$mod(float num, float modulus) {
float result = fmodf(num, modulus);
return (result < 0) != (modulus < 0) ? result + modulus : result;
}
public float Num32$random(void) {
return (float)drand48();
}
public float Num32$nan(CORD tag) {
return nanf(CORD_to_const_char_star(tag));
}
public bool Num32$isinf(float n) { return isinf(n); }
public bool Num32$finite(float n) { return finite(n); }
public bool Num32$isnan(float n) { return isnan(n); }
public const TypeInfo $Num32 = {
.size=sizeof(float),
.align=__alignof__(float),
.tag=CustomInfo,
.CustomInfo={
.compare=(void*)Num32$compare,
.equal=(void*)Num32$equal,
.as_text=(void*)Num32$as_text,
},
};
// vim: ts=4 sw=0 et cino=L2,l1,(0,W4,m1,\:0