tomo/stdlib/text.c

1410 lines
50 KiB
C

// Type info and methods for Text datatype, which uses libunistr for Unicode
// support and implements a datastructure based on Raku/MoarVM's strings to
// efficiently store arbitrary unicode data using a mix of densely packed plain
// ASCII, 32-bit integers representing grapheme clusters (see below), and ropes
// that represent text that is a composite of multiple subtexts. Subtexts are
// only nested one level deep, not arbitrarily deep trees.
//
// A note on grapheme clusters: In Unicode, codepoints can be represented using
// a 32-bit integer. Most codepoints correspond to the intuitive notion of a
// "letter", which is more formally known as a "grapheme cluster". A grapheme
// cluster is roughly speaking the amount of text that your cursor moves over
// when you press the arrow key once. However, some codepoints act as modifiers
// on other codepoints. For example, U+0301 (COMBINING ACUTE ACCENT) can modify
// a letter like "e" to form "é". During normalization, this frequently
// resolves down to a single unicode codepoint, in this case, "é" resolves to
// the single codepoint U+00E9 (LATIN SMALL LETTER E WITH ACUTE). However, in
// some cases, multiple codepoints make up a grapheme cluster but *don't*
// normalize to a single codepoint. For example, LATIN SMALL LETTER E (U+0065)
// + COMBINING VERTICAL LINE BELOW (U+0329) combine to form an unusual glyph
// that is not used frequently enough to warrant its own unique codepoint (this
// is basically what Zalgo text is).
//
// There are a lot of benefits to storing text with one grapheme cluster per
// index in a densely packed array. It lets us have one canonical length for
// the text that can be precomputed and is meaningful to users. It lets us
// quickly get the Nth "letter" in the text. Substring slicing is fast.
// However, since not all grapheme clusters take up the same number of
// codepoints, we're faced with the problem of how to jam multiple codepoints
// into a single 32-bit slot. Inspired by Raku and MoarVM's approach, this
// implementation uses "synthetic graphemes" (in Raku's terms, Normal Form
// Graphemes, aka NFG). A synthetic grapheme is a negative 32-bit signed
// integer that represents a multi-codepoint grapheme cluster that has been
// encountered during the program's runtime. These clusters are stored in a
// lookup array and hash map so that we can rapidly convert between the
// synthetic grapheme integer ID and the unicode codepoints associated with it.
// Essentially, it's like we create a supplement to the unicode standard with
// things that would be nice if they had their own codepoint so things worked
// out nicely because we're using them right now, and we'll give them a
// negative number so it doesn't overlap with any real codepoints.
//
// Example 1: U+0048, U+00E9
// AKA: LATIN CAPITAL LETTER H, LATIN SMALL LETTER E WITH ACUTE
// This would be stored as: (int32_t[]){0x48, 0xE9}
// Example 2: U+0048, U+0065, U+0309
// AKA: LATIN CAPITAL LETTER H, LATIN SMALL LETTER E, COMBINING VERTICAL LINE BELOW
// This would be stored as: (int32_t[]){0x48, -2}
// Where -2 is used as a lookup in an array that holds the actual unicode codepoints:
// (ucs4_t[]){0x65, 0x0309}
#include <assert.h>
#include <ctype.h>
#include <gc.h>
#include <printf.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
#include <sys/param.h>
#include <unistr.h>
#include <unicase.h>
#include <unictype.h>
#include <unigbrk.h>
#include <uniname.h>
#include "arrays.h"
#include "integers.h"
#include "patterns.h"
#include "tables.h"
#include "text.h"
// Use inline version of the siphash code for performance:
#include "siphash.h"
#include "siphash-internals.h"
typedef struct {
ucs4_t main_codepoint;
ucs4_t *utf32_cluster; // length-prefixed
const uint8_t *utf8;
} synthetic_grapheme_t;
// Synthetic grapheme clusters (clusters of more than one codepoint):
static Table_t grapheme_ids_by_codepoints = {}; // ucs4_t* length-prefixed codepoints -> int32_t ID
// This will hold a dynamically growing array of synthetic graphemes:
static synthetic_grapheme_t *synthetic_graphemes = NULL;
static int32_t synthetic_grapheme_capacity = 0;
static int32_t num_synthetic_graphemes = 0;
#define NUM_GRAPHEME_CODEPOINTS(id) (synthetic_graphemes[-(id)-1].utf32_cluster[0])
#define GRAPHEME_CODEPOINTS(id) (&synthetic_graphemes[-(id)-1].utf32_cluster[1])
#define GRAPHEME_UTF8(id) (synthetic_graphemes[-(id)-1].utf8)
static Text_t text_from_u32(ucs4_t *codepoints, int64_t num_codepoints, bool normalize);
PUREFUNC static bool graphemes_equal(ucs4_t **a, ucs4_t **b) {
if ((*a)[0] != (*b)[0]) return false;
for (int i = 0; i < (int)(*a)[0]; i++)
if ((*a)[i] != (*b)[i]) return false;
return true;
}
PUREFUNC static uint64_t grapheme_hash(ucs4_t **g) {
ucs4_t *cluster = *g;
return siphash24((void*)&cluster[1], sizeof(ucs4_t[cluster[0]]));
}
static const TypeInfo_t GraphemeClusterInfo = {
.size=sizeof(ucs4_t*),
.align=__alignof__(ucs4_t*),
.tag=CustomInfo,
.CustomInfo={.equal=(void*)graphemes_equal, .hash=(void*)grapheme_hash},
};
static const TypeInfo_t GraphemeIDLookupTableInfo = {
.size=sizeof(Table_t), .align=__alignof__(Table_t),
.tag=TableInfo, .TableInfo={.key=&GraphemeClusterInfo, .value=&Int32$info},
};
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wstack-protector"
public int32_t get_synthetic_grapheme(const ucs4_t *codepoints, int64_t utf32_len)
{
ucs4_t length_prefixed[1+utf32_len] = {};
length_prefixed[0] = (ucs4_t)utf32_len;
for (int i = 0; i < utf32_len; i++)
length_prefixed[i+1] = codepoints[i];
ucs4_t *ptr = &length_prefixed[0];
// Optimization for common case of one frequently used synthetic grapheme:
static int32_t last_grapheme = 0;
if (last_grapheme != 0 && graphemes_equal(&ptr, &synthetic_graphemes[-last_grapheme-1].utf32_cluster))
return last_grapheme;
int32_t *found = Table$get(grapheme_ids_by_codepoints, &ptr, &GraphemeIDLookupTableInfo);
if (found) return *found;
// New synthetic grapheme:
if (num_synthetic_graphemes >= synthetic_grapheme_capacity) {
// If we don't have space, allocate more:
synthetic_grapheme_capacity = MAX(128, synthetic_grapheme_capacity * 2);
synthetic_grapheme_t *new = GC_MALLOC(sizeof(synthetic_grapheme_t[synthetic_grapheme_capacity]));
memcpy(new, synthetic_graphemes, sizeof(synthetic_grapheme_t[num_synthetic_graphemes]));
synthetic_graphemes = new;
}
int32_t grapheme_id = -(num_synthetic_graphemes+1);
num_synthetic_graphemes += 1;
// Get UTF8 representation:
uint8_t u8_buf[64];
size_t u8_len = sizeof(u8_buf)/sizeof(u8_buf[0]);
uint8_t *u8 = u32_to_u8(codepoints, (size_t)utf32_len, u8_buf, &u8_len);
// For performance reasons, use an arena allocator here to ensure that
// synthetic graphemes store all of their information in a densely packed
// area with good cache locality:
static void *arena = NULL, *arena_end = NULL;
// Eat up any space needed to make arena 32-bit aligned:
if ((size_t)arena % __alignof__(ucs4_t) != 0)
arena += __alignof__(ucs4_t) - ((size_t)arena % __alignof__(ucs4_t));
// If we have filled up this arena, allocate a new one:
size_t needed_memory = sizeof(ucs4_t[1+utf32_len]) + sizeof(uint8_t[u8_len + 1]);
if (arena + needed_memory > arena_end) {
// Do reasonably big chunks at a time, so most synthetic codepoints are
// nearby each other in memory and cache locality is good. This is a
// rough guess at a good size:
size_t chunk_size = MAX(needed_memory, 512);
arena = GC_MALLOC_ATOMIC(chunk_size);
arena_end = arena + chunk_size;
}
// Copy length-prefixed UTF32 codepoints into the arena and store where they live:
ucs4_t *codepoint_copy = arena;
mempcpy(codepoint_copy, length_prefixed, sizeof(ucs4_t[1+utf32_len]));
synthetic_graphemes[-grapheme_id-1].utf32_cluster = codepoint_copy;
arena += sizeof(ucs4_t[1+utf32_len]);
// Copy UTF8 bytes into the arena and store where they live:
uint8_t *utf8_final = arena;
memcpy(utf8_final, u8, sizeof(uint8_t[u8_len]));
utf8_final[u8_len] = '\0'; // Add a terminating NUL byte
synthetic_graphemes[-grapheme_id-1].utf8 = utf8_final;
arena += sizeof(uint8_t[u8_len + 1]);
// Sickos at the unicode consortium decreed that you can have grapheme clusters
// that begin with *prefix* modifiers, so we gotta check for that case:
synthetic_graphemes[-grapheme_id-1].main_codepoint = length_prefixed[1];
for (ucs4_t i = 0; i < utf32_len; i++) {
if (!__builtin_expect(uc_is_property_prepended_concatenation_mark(length_prefixed[1+i]), 0)) {
synthetic_graphemes[-grapheme_id-1].main_codepoint = length_prefixed[1+i];
break;
}
}
// Cleanup from unicode API:
if (u8 != u8_buf) free(u8);
Table$set(&grapheme_ids_by_codepoints, &codepoint_copy, &grapheme_id, &GraphemeIDLookupTableInfo);
last_grapheme = grapheme_id;
return grapheme_id;
}
#pragma GCC diagnostic pop
PUREFUNC static inline int64_t num_subtexts(Text_t t)
{
if (t.tag != TEXT_SUBTEXT) return 1;
int64_t len = t.length;
int64_t n = 0;
while (len > 0) {
len -= t.subtexts[n].length;
++n;
}
return n;
}
int text_visualize(FILE *stream, Text_t t)
{
switch (t.tag) {
case TEXT_SHORT_ASCII: return fprintf(stream, "<ascii length=%ld>%.*s</ascii>", t.length, t.length, t.short_ascii);
case TEXT_ASCII: return fprintf(stream, "<ascii length=%ld>%.*s</ascii>", t.length, t.length, t.ascii);
case TEXT_GRAPHEMES: case TEXT_SHORT_GRAPHEMES: {
int printed = fprintf(stream, "<graphemes length=%ld>", t.length);
printed += Text$print(stream, t);
printed += fprintf(stream, "</graphemes>");
return printed;
}
case TEXT_SUBTEXT: {
int printed = fprintf(stream, "<text length=%ld>", t.length);
int64_t to_print = t.length;
for (int i = 0; to_print > 0; ++i) {
printed += fprintf(stream, "\n ");
printed += text_visualize(stream, t.subtexts[i]);
to_print -= t.subtexts[i].length;
if (t.subtexts[i].length == 0) break;
}
printed += fprintf(stream, "\n</text>");
return printed;
}
default: return 0;
}
}
public int Text$print(FILE *stream, Text_t t)
{
if (t.length == 0) return 0;
switch (t.tag) {
case TEXT_SHORT_ASCII: return fwrite(t.short_ascii, sizeof(char), (size_t)t.length, stream);
case TEXT_ASCII: return fwrite(t.ascii, sizeof(char), (size_t)t.length, stream);
case TEXT_GRAPHEMES: case TEXT_SHORT_GRAPHEMES: {
const int32_t *graphemes = t.tag == TEXT_SHORT_GRAPHEMES ? t.short_graphemes : t.graphemes;
int written = 0;
for (int64_t i = 0; i < t.length; i++) {
int32_t grapheme = graphemes[i];
if (grapheme >= 0) {
uint8_t buf[8];
size_t len = sizeof(buf);
uint8_t *u8 = u32_to_u8((ucs4_t*)&grapheme, 1, buf, &len);
written += (int)fwrite(u8, sizeof(char), len, stream);
if (u8 != buf) free(u8);
} else {
const uint8_t *u8 = GRAPHEME_UTF8(grapheme);
assert(u8);
written += (int)fwrite(u8, sizeof(uint8_t), strlen((char*)u8), stream);
}
}
return written;
}
case TEXT_SUBTEXT: {
int written = 0;
int i = 0;
for (int64_t to_print = t.length; to_print > 0; to_print -= t.subtexts[i].length, ++i)
written += Text$print(stream, t.subtexts[i]);
return written;
}
default: return 0;
}
}
static bool is_concat_stable(Text_t a, Text_t b)
{
if (a.length == 0 || b.length == 0)
return true;
int32_t last_a = Text$get_grapheme(a, a.length-1);
int32_t first_b = Text$get_grapheme(b, 0);
// Synthetic graphemes are weird and probably need to check with normalization:
if (last_a < 0 || first_b < 0)
return 0;
// Magic number, we know that no codepoints below here trigger instability:
static const int32_t LOWEST_CODEPOINT_TO_CHECK = 0x300;
if (last_a < LOWEST_CODEPOINT_TO_CHECK && first_b < LOWEST_CODEPOINT_TO_CHECK)
return true;
// Do a normalization run for these two codepoints and see if it looks different:
ucs4_t codepoints[2] = {(ucs4_t)last_a, (ucs4_t)first_b};
ucs4_t norm_buf[3*2]; // Normalization should not exceed 3x in the input length
size_t norm_length = sizeof(norm_buf)/sizeof(norm_buf[0]);
ucs4_t *normalized = u32_normalize(UNINORM_NFC, codepoints, 2, norm_buf, &norm_length);
if (norm_length != 2) {
// Looks like these two codepoints merged into one (or maybe had a child, who knows?)
if (normalized != norm_buf) free(normalized);
return false;
}
// If there's still two codepoints, we might end up with a single grapheme
// cluster which will need to turn into a synthetic grapheme:
const void *second_grapheme = u32_grapheme_next(normalized, &normalized[2]);
if (normalized != norm_buf) free(normalized);
return (second_grapheme == &normalized[1]);
}
static Text_t concat2_assuming_safe(Text_t a, Text_t b)
{
if (a.length == 0) return b;
if (b.length == 0) return a;
if (a.tag == TEXT_SUBTEXT && b.tag == TEXT_SUBTEXT) {
int64_t na = num_subtexts(a);
int64_t nb = num_subtexts(b);
Text_t ret = {
.length=a.length + b.length,
.tag=TEXT_SUBTEXT,
.subtexts=GC_MALLOC(sizeof(Text_t[na + nb])),
};
memcpy(&ret.subtexts[0], a.subtexts, sizeof(Text_t[na]));
memcpy(&ret.subtexts[na], b.subtexts, sizeof(Text_t[nb]));
return ret;
} else if (a.tag == TEXT_SUBTEXT) {
int64_t n = num_subtexts(a);
Text_t ret = {
.length=a.length + b.length,
.tag=TEXT_SUBTEXT,
.subtexts=GC_MALLOC(sizeof(Text_t[n + 1])),
};
memcpy(ret.subtexts, a.subtexts, sizeof(Text_t[n]));
ret.subtexts[n] = b;
return ret;
} else if (b.tag == TEXT_SUBTEXT) {
int64_t n = num_subtexts(b);
Text_t ret = {
.length=a.length + b.length,
.tag=TEXT_SUBTEXT,
.subtexts=GC_MALLOC(sizeof(Text_t[n + 1])),
};
ret.subtexts[0] = a;
memcpy(&ret.subtexts[1], b.subtexts, sizeof(Text_t[n]));
return ret;
} else {
Text_t ret = {
.length=a.length + b.length,
.tag=TEXT_SUBTEXT,
.subtexts=GC_MALLOC(sizeof(Text_t[2])),
};
ret.subtexts[0] = a;
ret.subtexts[1] = b;
return ret;
}
}
static Text_t concat2(Text_t a, Text_t b)
{
if (a.length == 0) return b;
if (b.length == 0) return a;
if (__builtin_expect(is_concat_stable(a, b), 1))
return concat2_assuming_safe(a, b);
// Do full normalization of the last/first characters
int32_t last_a = Text$get_grapheme(a, a.length-1);
int32_t first_b = Text$get_grapheme(b, 0);
size_t utf32_len = (last_a >= 0 ? 1 : NUM_GRAPHEME_CODEPOINTS(last_a)) + (first_b >= 0 ? 1 : NUM_GRAPHEME_CODEPOINTS(first_b));
ucs4_t join_graphemes[utf32_len] = {};
ucs4_t *p = &join_graphemes[0];
if (last_a < 0) p = mempcpy(p, GRAPHEME_CODEPOINTS(last_a), NUM_GRAPHEME_CODEPOINTS(last_a));
else *(p++) = (ucs4_t)last_a;
if (first_b < 0) p = mempcpy(p, GRAPHEME_CODEPOINTS(first_b), NUM_GRAPHEME_CODEPOINTS(first_b));
else *(p++) = (ucs4_t)first_b;
Text_t glue = text_from_u32(join_graphemes, (int64_t)utf32_len, true);
if (a.length == 1 && b.length == 1)
return glue;
else if (a.length == 1)
return concat2_assuming_safe(glue, Text$slice(b, I(2), I(b.length)));
else if (b.length == 1)
return concat2_assuming_safe(Text$slice(a, I(1), I(a.length-1)), glue);
else
return concat2_assuming_safe(
concat2_assuming_safe(Text$slice(a, I(1), I(a.length-1)), glue),
b);
}
public Text_t Text$_concat(int n, Text_t items[n])
{
if (n == 0) return (Text_t){.length=0};
if (n == 1) return items[0];
if (n == 2) return concat2(items[0], items[1]);
int64_t len = 0, subtexts = 0;
for (int i = 0; i < n; i++) {
len += items[i].length;
if (items[i].length > 0)
subtexts += num_subtexts(items[i]);
}
Text_t ret = {
.length=0,
.tag=TEXT_SUBTEXT,
.subtexts=GC_MALLOC(sizeof(Text_t[len])),
};
int64_t sub_i = 0;
for (int i = 0; i < n; i++) {
if (items[i].length == 0)
continue;
if (i > 0 && !__builtin_expect(is_concat_stable(items[i-1], items[i]), 1)) {
// Oops, guess this wasn't stable for concatenation, let's break it
// up into subtasks:
return concat2(ret, Text$_concat(n-i, &items[i]));
}
if (items[i].tag == TEXT_SUBTEXT) {
for (int64_t j = 0, remainder = items[i].length; remainder > 0; j++) {
ret.subtexts[sub_i++] = items[i].subtexts[j];
remainder -= items[i].subtexts[j].length;
}
} else {
ret.subtexts[sub_i++] = items[i];
}
ret.length += items[i].length;
}
return ret;
}
public Text_t Text$repeat(Text_t text, Int_t count)
{
if (text.length == 0 || Int$is_negative(count))
return Text("");
Int_t result_len = Int$times(count, I(text.length));
if (Int$compare_value(result_len, I(1l<<40)) > 0)
fail("Text repeating would produce too big of an result!");
int64_t count64 = Int_to_Int64(count, false);
if (text.tag == TEXT_SUBTEXT) {
int64_t subtexts = num_subtexts(text);
Text_t ret = {
.length=text.length * count64,
.tag=TEXT_SUBTEXT,
.subtexts=GC_MALLOC(sizeof(Text_t[subtexts * count64])),
};
for (int64_t c = 0; c < count64; c++) {
for (int64_t i = 0; i < subtexts; i++) {
if (text.subtexts[i].length > 0)
ret.subtexts[c*subtexts + i] = text.subtexts[i];
}
}
return ret;
} else {
Text_t ret = {
.length=text.length * count64,
.tag=TEXT_SUBTEXT,
.subtexts=GC_MALLOC(sizeof(Text_t[count64])),
};
for (int64_t i = 0; i < count64; i++)
ret.subtexts[i] = text;
return ret;
}
}
public Text_t Text$slice(Text_t text, Int_t first_int, Int_t last_int)
{
int64_t first = Int_to_Int64(first_int, false);
int64_t last = Int_to_Int64(last_int, false);
if (first == 0) fail("Invalid index: 0");
if (last == 0) return (Text_t){.length=0};
if (first < 0) first = text.length + first + 1;
if (last < 0) last = text.length + last + 1;
if (last > text.length) last = text.length;
if (first > text.length || last < first)
return (Text_t){.length=0};
if (first == 1 && last == text.length)
return text;
switch (text.tag) {
case TEXT_SHORT_ASCII: {
Text_t ret = (Text_t) {
.tag=TEXT_SHORT_ASCII,
.length=last - first + 1,
};
memcpy(ret.short_ascii, text.short_ascii + (first-1), (size_t)ret.length);
return ret;
}
case TEXT_ASCII: {
Text_t ret = {
.tag=TEXT_ASCII,
.length=last - first + 1,
.ascii=text.ascii + (first-1),
};
return ret;
}
case TEXT_SHORT_GRAPHEMES: {
assert((first == 1 && last == 1) || (first == 2 && last == 2));
Text_t ret = {
.tag=TEXT_SHORT_GRAPHEMES,
.length=1,
.short_graphemes={text.short_graphemes[first-1]},
};
return ret;
}
case TEXT_GRAPHEMES: {
Text_t ret = {
.tag=TEXT_GRAPHEMES,
.length=last - first + 1,
.graphemes=text.graphemes + (first-1),
};
return ret;
}
case TEXT_SUBTEXT: {
Text_t *subtexts = text.subtexts;
while (first > subtexts[0].length) {
first -= subtexts[0].length;
last -= subtexts[0].length;
++subtexts;
}
int64_t needed_len = (last - first) + 1;
int64_t num_subtexts = 0;
for (int64_t included = 0; included < needed_len; ) {
if (included == 0)
included += subtexts[num_subtexts].length - first + 1;
else
included += subtexts[num_subtexts].length;
num_subtexts += 1;
}
if (num_subtexts == 1)
return Text$slice(subtexts[0], I(first), I(last));
Text_t ret = {
.length=needed_len,
.tag=TEXT_SUBTEXT,
.subtexts=GC_MALLOC(sizeof(Text_t[num_subtexts])),
};
for (int64_t i = 0; i < num_subtexts; i++) {
ret.subtexts[i] = Text$slice(subtexts[i], I(first), I(last));
first = 1;
needed_len -= ret.subtexts[i].length;
last = first + needed_len - 1;
}
return ret;
}
default: errx(1, "Invalid tag");
}
}
public Text_t Text$cluster(Text_t text, Int_t index_int)
{
int64_t index = Int_to_Int64(index_int, false);
if (index == 0) fail("Invalid index: 0");
if (index < 0) index = text.length + index + 1;
if (index > text.length || index < 1)
fail("Invalid index: %ld is beyond the length of the text (length = %ld)",
Int_to_Int64(index_int, false), text.length);
switch (text.tag) {
case TEXT_SHORT_ASCII: {
return (Text_t) {
.tag=TEXT_SHORT_ASCII,
.length=1,
.short_ascii={text.short_ascii[index-1]},
};
}
case TEXT_ASCII: {
return (Text_t) {
.tag=TEXT_SHORT_ASCII,
.length=1,
.short_ascii={text.ascii[index-1]},
};
}
case TEXT_SHORT_GRAPHEMES: {
return (Text_t) {
.tag=TEXT_SHORT_GRAPHEMES,
.length=1,
.short_graphemes={text.short_graphemes[index-1]},
};
}
case TEXT_GRAPHEMES: {
return (Text_t) {
.tag=TEXT_SHORT_GRAPHEMES,
.length=1,
.short_graphemes={text.graphemes[index-1]},
};
}
case TEXT_SUBTEXT: {
Text_t *subtext = text.subtexts;
while (index > subtext[0].length) {
index -= subtext[0].length;
++subtext;
}
return Text$cluster(*subtext, I(index));
}
default: errx(1, "Invalid tag");
}
}
Text_t text_from_u32(ucs4_t *codepoints, int64_t num_codepoints, bool normalize)
{
// Normalization is apparently guaranteed to never exceed 3x in the input length
ucs4_t norm_buf[MIN(256, 3*num_codepoints)];
if (normalize) {
size_t norm_length = sizeof(norm_buf)/sizeof(norm_buf[0]);
ucs4_t *normalized = u32_normalize(UNINORM_NFC, codepoints, (size_t)num_codepoints, norm_buf, &norm_length);
codepoints = normalized;
num_codepoints = (int64_t)norm_length;
}
// char breaks[num_codepoints];
// u32_grapheme_breaks(codepoints, num_codepoints, breaks);
Text_t ret = {
.length=0,
.tag=TEXT_SHORT_GRAPHEMES,
};
const ucs4_t *src = codepoints;
int32_t *graphemes = ret.short_graphemes;
while (src < &codepoints[num_codepoints]) {
if (ret.tag == TEXT_SHORT_GRAPHEMES && ret.length + 1 > 2) {
graphemes = GC_MALLOC_ATOMIC(sizeof(int32_t[num_codepoints])); // May be a slight overallocation
graphemes[0] = ret.short_graphemes[0];
graphemes[1] = ret.short_graphemes[1];
ret.tag = TEXT_GRAPHEMES;
ret.graphemes = graphemes;
}
// TODO: use grapheme breaks instead of u32_grapheme_next()
const ucs4_t *next = u32_grapheme_next(src, &codepoints[num_codepoints]);
if (next == &src[1]) {
graphemes[ret.length] = (int32_t)*src;
} else {
// Synthetic grapheme
graphemes[ret.length] = get_synthetic_grapheme(src, next-src);
}
++ret.length;
src = next;
}
if (normalize && codepoints != norm_buf) free(codepoints);
return ret;
}
public OptionalText_t Text$from_strn(const char *str, size_t len)
{
int64_t ascii_span = 0;
for (size_t i = 0; i < len && isascii(str[i]); i++)
ascii_span++;
if (ascii_span == (int64_t)len) { // All ASCII
Text_t ret = {.length=ascii_span};
if (ascii_span <= 8) {
ret.tag = TEXT_SHORT_ASCII;
for (int64_t i = 0; i < ascii_span; i++)
ret.short_ascii[i] = str[i];
} else {
ret.tag = TEXT_ASCII;
ret.ascii = str;
}
return ret;
} else {
if (u8_check((uint8_t*)str, len) != NULL)
return NONE_TEXT;
ucs4_t buf[128];
size_t length = sizeof(buf)/sizeof(buf[0]);
ucs4_t *codepoints = u8_to_u32((uint8_t*)str, (size_t)ascii_span + strlen(str + ascii_span), buf, &length);
Text_t ret = text_from_u32(codepoints, (int64_t)length, true);
if (codepoints != buf) free(codepoints);
return ret;
}
}
public OptionalText_t Text$from_str(const char *str)
{
return str ? Text$from_strn(str, strlen(str)) : Text("");
}
static void u8_buf_append(Text_t text, char **buf, int64_t *capacity, int64_t *i)
{
switch (text.tag) {
case TEXT_ASCII: case TEXT_SHORT_ASCII: {
if (*i + text.length > (int64_t)*capacity) {
*capacity = *i + text.length + 1;
*buf = GC_REALLOC(*buf, (size_t)*capacity);
}
const char *bytes = text.tag == TEXT_ASCII ? text.ascii : text.short_ascii;
memcpy(*buf + *i, bytes, (size_t)text.length);
*i += text.length;
break;
}
case TEXT_GRAPHEMES: case TEXT_SHORT_GRAPHEMES: {
const int32_t *graphemes = text.tag == TEXT_GRAPHEMES ? text.graphemes : text.short_graphemes;
for (int64_t g = 0; g < text.length; g++) {
if (graphemes[g] >= 0) {
uint8_t u8_buf[64];
size_t u8_len = sizeof(u8_buf);
uint8_t *u8 = u32_to_u8((ucs4_t*)&graphemes[g], 1, u8_buf, &u8_len);
if (*i + (int64_t)u8_len > (int64_t)*capacity) {
*capacity = *i + (int64_t)u8_len + 1;
*buf = GC_REALLOC(*buf, (size_t)*capacity);
}
memcpy(*buf + *i, u8, u8_len);
*i += (int64_t)u8_len;
if (u8 != u8_buf) free(u8);
} else {
const uint8_t *u8 = GRAPHEME_UTF8(graphemes[g]);
size_t u8_len = u8_strlen(u8);
if (*i + (int64_t)u8_len > (int64_t)*capacity) {
*capacity = *i + (int64_t)u8_len + 1;
*buf = GC_REALLOC(*buf, (size_t)*capacity);
}
memcpy(*buf + *i, u8, u8_len);
*i += (int64_t)u8_len;
}
}
break;
}
case TEXT_SUBTEXT: {
for (int64_t s = 0, remaining = text.length; remaining > 0; s++) {
u8_buf_append(text.subtexts[s], buf, capacity, i);
remaining -= text.subtexts[s].length;
}
break;
}
default: break;
}
}
public char *Text$as_c_string(Text_t text)
{
int64_t capacity = text.length + 1;
char *buf = GC_MALLOC_ATOMIC((size_t)capacity);
int64_t i = 0;
u8_buf_append(text, &buf, &capacity, &i);
if (i + 1 > (int64_t)capacity) {
capacity = i + 1;
buf = GC_REALLOC(buf, (size_t)capacity);
}
buf[i] = '\0';
return buf;
}
PUREFUNC public uint64_t Text$hash(Text_t *text)
{
if (text->hash != 0) return text->hash;
siphash sh;
siphashinit(&sh, sizeof(int32_t[text->length]));
union {
int32_t chunks[2];
uint64_t whole;
} tmp;
switch (text->tag) {
case TEXT_ASCII: case TEXT_SHORT_ASCII: {
const char *bytes = text->tag == TEXT_ASCII ? text->ascii : text->short_ascii;
for (int64_t i = 0; i + 1 < text->length; i++) {
tmp.chunks[0] = (int32_t)bytes[i];
tmp.chunks[1] = (int32_t)bytes[i+1];
siphashadd64bits(&sh, tmp.whole);
}
int32_t last = text->length & 0x1 ? (int32_t)bytes[text->length-1] : 0; // Odd number of graphemes
text->hash = siphashfinish_last_part(&sh, (uint64_t)last);
break;
}
case TEXT_GRAPHEMES: {
const int32_t *graphemes = text->graphemes;
for (int64_t i = 0; i + 1 < text->length; i++) {
tmp.chunks[0] = graphemes[i];
tmp.chunks[1] = graphemes[i];
siphashadd64bits(&sh, tmp.whole);
}
int32_t last = text->length & 0x1 ? graphemes[text->length-1] : 0; // Odd number of graphemes
text->hash = siphashfinish_last_part(&sh, (uint64_t)last);
break;
}
case TEXT_SHORT_GRAPHEMES: {
tmp.chunks[0] = text->short_graphemes[0];
if (text->length > 1)
tmp.chunks[1] = text->short_graphemes[1];
text->hash = siphashfinish_last_part(&sh, (uint64_t)tmp.whole);
break;
}
case TEXT_SUBTEXT: {
int32_t leftover = 0;
for (int64_t sub_i = 0, to_hash = text->length; to_hash > 0; ) {
Text_t subtext = text->subtexts[sub_i];
if (subtext.tag == TEXT_ASCII || subtext.tag == TEXT_SHORT_ASCII) {
const char *bytes = subtext.tag == TEXT_ASCII ? subtext.ascii : subtext.short_ascii;
int64_t grapheme = 0;
if (leftover) {
tmp.chunks[0] = leftover;
tmp.chunks[1] = (int32_t)bytes[0];
siphashadd64bits(&sh, tmp.whole);
grapheme += 1;
}
for (; grapheme + 1 < subtext.length; grapheme += 2) {
tmp.chunks[0] = (int32_t)bytes[grapheme];
tmp.chunks[1] = (int32_t)bytes[grapheme+1];
siphashadd64bits(&sh, tmp.whole);
}
leftover = grapheme < subtext.length ? (int32_t)bytes[grapheme] : 0;
} else if (subtext.tag == TEXT_SHORT_GRAPHEMES) {
if (leftover) {
tmp.chunks[0] = leftover;
tmp.chunks[1] = subtext.short_graphemes[0];
siphashadd64bits(&sh, tmp.whole);
leftover = subtext.length > 1 ? subtext.short_graphemes[1] : 0;
} else if (subtext.length == 1) {
leftover = subtext.short_graphemes[0];
} else {
tmp.chunks[0] = subtext.short_graphemes[0];
tmp.chunks[1] = subtext.short_graphemes[1];
siphashadd64bits(&sh, tmp.whole);
}
} else if (subtext.tag == TEXT_GRAPHEMES) {
const int32_t *graphemes = subtext.graphemes;
int64_t grapheme = 0;
if (leftover) {
tmp.chunks[0] = leftover;
tmp.chunks[1] = graphemes[0];
siphashadd64bits(&sh, tmp.whole);
grapheme += 1;
}
for (; grapheme + 1 < subtext.length; grapheme += 2) {
tmp.chunks[0] = graphemes[grapheme];
tmp.chunks[1] = graphemes[grapheme+1];
siphashadd64bits(&sh, tmp.whole);
}
leftover = grapheme < subtext.length ? graphemes[grapheme] : 0;
}
to_hash -= text->subtexts[sub_i].length;
++sub_i;
}
text->hash = siphashfinish_last_part(&sh, (uint64_t)leftover);
break;
}
default: errx(1, "Invalid text");
}
if (text->hash == 0)
text->hash = 1;
return text->hash;
}
public int32_t Text$get_grapheme_fast(TextIter_t *state, int64_t index)
{
Text_t text = state->text;
switch (text.tag) {
case TEXT_ASCII: return index < text.length ? (int32_t)text.ascii[index] : 0;
case TEXT_SHORT_ASCII: return index < text.length ? (int32_t)text.short_ascii[index] : 0;
case TEXT_GRAPHEMES: return index < text.length ? text.graphemes[index] : 0;
case TEXT_SHORT_GRAPHEMES: return index < text.length ? text.short_graphemes[index] : 0;
case TEXT_SUBTEXT: {
if (index < 0 || index >= text.length)
return 0;
while (index < state->sum_of_previous_subtexts && state->subtext > 0) {
state->sum_of_previous_subtexts -= text.subtexts[state->subtext].length;
state->subtext -= 1;
}
for (;;) {
if (index < state->sum_of_previous_subtexts + text.subtexts[state->subtext].length)
return Text$get_grapheme(text.subtexts[state->subtext], index - state->sum_of_previous_subtexts);
state->sum_of_previous_subtexts += text.subtexts[state->subtext].length;
state->subtext += 1;
}
return 0;
}
default: errx(1, "Invalid text");
}
return 0;
}
public uint32_t Text$get_main_grapheme_fast(TextIter_t *state, int64_t index)
{
int32_t g = Text$get_grapheme_fast(state, index);
return (g) >= 0 ? (ucs4_t)(g) : synthetic_graphemes[-(g)-1].main_codepoint;
}
PUREFUNC public int32_t Text$compare(const Text_t *a, const Text_t *b)
{
if (a == b) return 0;
int64_t len = MAX(a->length, b->length);
TextIter_t a_state = {*a, 0, 0}, b_state = {*b, 0, 0};
for (int64_t i = 0; i < len; i++) {
int32_t ai = Text$get_grapheme_fast(&a_state, i);
int32_t bi = Text$get_grapheme_fast(&b_state, i);
if (ai == bi) continue;
int32_t cmp;
if (ai > 0 && bi > 0) {
cmp = u32_cmp((ucs4_t*)&ai, (ucs4_t*)&bi, 1);
} else if (ai > 0) {
cmp = u32_cmp2(
(ucs4_t*)&ai, 1,
GRAPHEME_CODEPOINTS(bi),
NUM_GRAPHEME_CODEPOINTS(bi));
} else if (bi > 0) {
cmp = u32_cmp2(
GRAPHEME_CODEPOINTS(ai),
NUM_GRAPHEME_CODEPOINTS(ai),
(ucs4_t*)&bi, 1);
} else {
cmp = u32_cmp2(
GRAPHEME_CODEPOINTS(ai),
NUM_GRAPHEME_CODEPOINTS(ai),
GRAPHEME_CODEPOINTS(bi),
NUM_GRAPHEME_CODEPOINTS(bi));
}
if (cmp != 0) return cmp;
}
return 0;
}
PUREFUNC public bool Text$starts_with(Text_t text, Text_t prefix)
{
if (text.length < prefix.length)
return false;
TextIter_t text_state = {text, 0, 0}, prefix_state = {prefix, 0, 0};
for (int64_t i = 0; i < prefix.length; i++) {
int32_t text_i = Text$get_grapheme_fast(&text_state, i);
int32_t prefix_i = Text$get_grapheme_fast(&prefix_state, i);
if (text_i != prefix_i) return false;
}
return true;
}
PUREFUNC public bool Text$ends_with(Text_t text, Text_t suffix)
{
if (text.length < suffix.length)
return false;
TextIter_t text_state = {text, 0, 0}, suffix_state = {suffix, 0, 0};
for (int64_t i = 0; i < suffix.length; i++) {
int32_t text_i = Text$get_grapheme_fast(&text_state, text.length - suffix.length + i);
int32_t suffix_i = Text$get_grapheme_fast(&suffix_state, i);
if (text_i != suffix_i) return false;
}
return true;
}
PUREFUNC public bool Text$equal_values(Text_t a, Text_t b)
{
if (a.length != b.length || (a.hash != 0 && b.hash != 0 && a.hash != b.hash))
return false;
int64_t len = a.length;
TextIter_t a_state = {a, 0, 0}, b_state = {b, 0, 0};
for (int64_t i = 0; i < len; i++) {
int32_t ai = Text$get_grapheme_fast(&a_state, i);
int32_t bi = Text$get_grapheme_fast(&b_state, i);
if (ai != bi) return false;
}
return true;
}
PUREFUNC public bool Text$equal(const Text_t *a, const Text_t *b)
{
if (a == b) return true;
return Text$equal_values(*a, *b);
}
PUREFUNC public bool Text$equal_ignoring_case(Text_t a, Text_t b)
{
if (a.length != b.length)
return false;
int64_t len = a.length;
TextIter_t a_state = {a, 0, 0}, b_state = {b, 0, 0};
const char *language = uc_locale_language();
for (int64_t i = 0; i < len; i++) {
int32_t ai = Text$get_grapheme_fast(&a_state, i);
int32_t bi = Text$get_grapheme_fast(&b_state, i);
if (ai != bi) {
const ucs4_t *a_codepoints = ai >= 0 ? (ucs4_t*)&ai : GRAPHEME_CODEPOINTS(ai);
int64_t a_len = ai >= 0 ? 1 : NUM_GRAPHEME_CODEPOINTS(ai);
const ucs4_t *b_codepoints = bi >= 0 ? (ucs4_t*)&bi : GRAPHEME_CODEPOINTS(bi);
int64_t b_len = bi >= 0 ? 1 : NUM_GRAPHEME_CODEPOINTS(bi);
int cmp = 0;
(void)u32_casecmp(a_codepoints, (size_t)a_len, b_codepoints, (size_t)b_len, language, UNINORM_NFC, &cmp);
if (cmp != 0)
return false;
}
}
return true;
}
public Text_t Text$upper(Text_t text)
{
if (text.length == 0) return text;
Array_t codepoints = Text$utf32_codepoints(text);
const char *language = uc_locale_language();
ucs4_t buf[128];
size_t out_len = sizeof(buf)/sizeof(buf[0]);
ucs4_t *upper = u32_toupper(codepoints.data, (size_t)codepoints.length, language, UNINORM_NFC, buf, &out_len);
Text_t ret = text_from_u32(upper, (int64_t)out_len, false);
if (upper != buf) free(upper);
return ret;
}
public Text_t Text$lower(Text_t text)
{
if (text.length == 0) return text;
Array_t codepoints = Text$utf32_codepoints(text);
const char *language = uc_locale_language();
ucs4_t buf[128];
size_t out_len = sizeof(buf)/sizeof(buf[0]);
ucs4_t *lower = u32_tolower(codepoints.data, (size_t)codepoints.length, language, UNINORM_NFC, buf, &out_len);
Text_t ret = text_from_u32(lower, (int64_t)out_len, false);
if (lower != buf) free(lower);
return ret;
}
public Text_t Text$title(Text_t text)
{
if (text.length == 0) return text;
Array_t codepoints = Text$utf32_codepoints(text);
const char *language = uc_locale_language();
ucs4_t buf[128];
size_t out_len = sizeof(buf)/sizeof(buf[0]);
ucs4_t *title = u32_totitle(codepoints.data, (size_t)codepoints.length, language, UNINORM_NFC, buf, &out_len);
Text_t ret = text_from_u32(title, (int64_t)out_len, false);
if (title != buf) free(title);
return ret;
}
public int printf_text_size(const struct printf_info *info, size_t n, int argtypes[n], int sizes[n])
{
if (n < 1) return -1;
(void)info;
argtypes[0] = PA_POINTER;
sizes[0] = sizeof(Text_t*);
return 1;
}
public int printf_text(FILE *stream, const struct printf_info *info, const void *const args[])
{
Text_t t = **(Text_t**)args[0];
if (info->alt)
return text_visualize(stream, t);
else
return Text$print(stream, t);
}
static INLINE Text_t _quoted(Text_t text, bool colorize, char quote_char)
{
// TODO: optimize for ASCII and short strings
Array_t graphemes = {.atomic=1};
#define add_char(c) Array$insert_value(&graphemes, (ucs4_t)c, I_small(0), sizeof(ucs4_t))
#define add_str(s) ({ for (const char *_c = s; *_c; ++_c) Array$insert_value(&graphemes, (ucs4_t)*_c, I_small(0), sizeof(ucs4_t)); })
if (colorize)
add_str("\x1b[35m");
if (quote_char != '"' && quote_char != '\'' && quote_char != '`')
add_char('$');
add_char(quote_char);
#define add_escaped(str) ({ if (colorize) add_str("\x1b[34;1m"); \
if (!just_escaped) add_char('$'); \
add_char('\\'); add_str(str); just_escaped = true; \
if (colorize) add_str("\x1b[0;35m"); })
TextIter_t state = {text, 0, 0};
bool just_escaped = false;
for (int64_t i = 0; i < text.length; i++) {
int32_t g = Text$get_grapheme_fast(&state, i);
switch (g) {
case '\a': add_escaped("a"); break;
case '\b': add_escaped("b"); break;
case '\x1b': add_escaped("e"); break;
case '\f': add_escaped("f"); break;
case '\n': add_escaped("n"); break;
case '\r': add_escaped("r"); break;
case '\t': add_escaped("t"); break;
case '\v': add_escaped("v"); break;
case '\\': {
if (just_escaped) {
add_escaped("\\");
} else {
add_char('\\');
just_escaped = false;
}
break;
}
case '$': {
if (quote_char == '\'') {
add_char('$');
just_escaped = false;
} else {
add_escaped("$");
}
break;
}
case '\x00' ... '\x06': case '\x0E' ... '\x1A':
case '\x1C' ... '\x1F': case '\x7F' ... '\x7F': {
if (colorize) add_str("\x1b[34;1m");
add_char('\\');
add_char('x');
char tmp[4];
sprintf(tmp, "%02X", g);
add_str(tmp);
if (colorize)
add_str("\x1b[0;35m");
just_escaped = true;
break;
}
default: {
if (g == quote_char) {
add_escaped(((char[2]){quote_char, 0}));
} else {
add_char(g);
just_escaped = false;
}
break;
}
}
}
add_char(quote_char);
if (colorize)
add_str("\x1b[m");
return (Text_t){.length=graphemes.length, .tag=TEXT_GRAPHEMES, .graphemes=graphemes.data};
#undef add_str
#undef add_char
#undef add_escaped
}
public Text_t Text$as_text(const void *text, bool colorize, const TypeInfo_t *info)
{
(void)info;
if (info->TextInfo.lang && streq(info->TextInfo.lang, "Path")) {
if (!text) return Text("Path");
return Text$format("(%s%k%s)", colorize ? "\x1b[35m" : "", text, colorize ? "\x1b[m" : "");
}
if (!text) return info && info->TextInfo.lang ? Text$from_str(info->TextInfo.lang) : Text("Text");
char quote_char;
if (info == &Pattern$info) {
quote_char = Text$has(*(Text_t*)text, Pattern("/")) && !Text$has(*(Text_t*)text, Pattern("|")) ? '|' : '/';
} else {
// Figure out the best quotation mark to use:
bool has_dollar = false, has_double_quote = false, has_backtick = false,
has_single_quote = false, needs_escapes = false;
TextIter_t state = {*(Text_t*)text, 0, 0};
for (int64_t i = 0; i < state.text.length; i++) {
int32_t g = Text$get_grapheme_fast(&state, i);
if (g == '$') {
has_dollar = true;
} else if (g == '"') {
has_double_quote = true;
} else if (g == '`') {
has_backtick = true;
} else if (g == (g & 0x7F) && (g == '\'' || g == '\n' || g == '\r' || g == '\t' || !isprint((char)g))) {
needs_escapes = true;
}
}
// If there's dollar signs and/or double quotes in the string, it would
// be nice to avoid needing to escape them by using single quotes, but
// only if we don't have single quotes or need to escape anything else
// (because single quotes don't have interpolation):
if ((has_dollar || has_double_quote) && !has_single_quote && !needs_escapes)
quote_char = '\'';
// If there is a double quote, but no backtick, we can save a bit of
// escaping by using backtick instead of double quote:
else if (has_double_quote && !has_backtick)
quote_char = '`';
// Otherwise fall back to double quotes as the default quoting style:
else
quote_char = '"';
}
Text_t as_text = _quoted(*(Text_t*)text, colorize, quote_char);
if (info && info->TextInfo.lang && info != &Text$info && info != &Pattern$info)
as_text = Text$concat(
colorize ? Text("\x1b[1m$") : Text("$"),
Text$from_str(info->TextInfo.lang),
colorize ? Text("\x1b[0m") : Text(""),
as_text);
return as_text;
}
public Text_t Text$quoted(Text_t text, bool colorize)
{
return _quoted(text, colorize, '"');
}
public Text_t Text$join(Text_t glue, Array_t pieces)
{
if (pieces.length == 0) return (Text_t){.length=0};
Text_t result = *(Text_t*)pieces.data;
for (int64_t i = 1; i < pieces.length; i++) {
result = Text$concat(result, glue, *(Text_t*)(pieces.data + i*pieces.stride));
}
return result;
}
__attribute__((format(printf, 1, 2)))
public Text_t Text$format(const char *fmt, ...)
{
va_list args;
va_start(args, fmt);
char buf[9];
int len = vsnprintf(buf, sizeof(buf), fmt, args);
Text_t ret;
if (len <= 8) {
ret = (Text_t){
.length=len,
.tag=TEXT_SHORT_ASCII,
};
for (int i = 0; i < len; i++)
ret.short_ascii[i] = buf[i];
} else {
char *str = GC_MALLOC_ATOMIC((size_t)(len+1));
vsnprintf(str, (size_t)(len+1), fmt, args);
ret = Text$from_str(str);
}
va_end(args);
return ret;
}
public Array_t Text$clusters(Text_t text)
{
Array_t clusters = {.atomic=1};
for (int64_t i = 1; i <= text.length; i++) {
Text_t cluster = Text$slice(text, I(i), I(i));
Array$insert(&clusters, &cluster, I_small(0), sizeof(Text_t));
}
return clusters;
}
public Array_t Text$utf32_codepoints(Text_t text)
{
Array_t codepoints = {.atomic=1};
TextIter_t state = {text, 0, 0};
for (int64_t i = 0; i < text.length; i++) {
int32_t grapheme = Text$get_grapheme_fast(&state, i);
if (grapheme < 0) {
for (int64_t c = 0; c < NUM_GRAPHEME_CODEPOINTS(grapheme); c++) {
ucs4_t subg = GRAPHEME_CODEPOINTS(grapheme)[c];
Array$insert(&codepoints, &subg, I_small(0), sizeof(ucs4_t));
}
} else {
Array$insert(&codepoints, &grapheme, I_small(0), sizeof(ucs4_t));
}
}
return codepoints;
}
public Array_t Text$utf8_bytes(Text_t text)
{
const char *str = Text$as_c_string(text);
return (Array_t){.length=strlen(str), .stride=1, .atomic=1, .data=(void*)str};
}
static INLINE const char *codepoint_name(ucs4_t c)
{
char *name = GC_MALLOC_ATOMIC(UNINAME_MAX);
char *found_name = unicode_character_name(c, name);
if (found_name) return found_name;
const uc_block_t *block = uc_block(c);
assert(block);
snprintf(name, UNINAME_MAX, "%s-%X", block->name, c);
return name;
}
public Array_t Text$codepoint_names(Text_t text)
{
Array_t names = {};
TextIter_t state = {text, 0, 0};
for (int64_t i = 0; i < text.length; i++) {
int32_t grapheme = Text$get_grapheme_fast(&state, i);
if (grapheme < 0) {
for (int64_t c = 0; c < NUM_GRAPHEME_CODEPOINTS(grapheme); c++) {
const char *name = codepoint_name(GRAPHEME_CODEPOINTS(grapheme)[c]);
Text_t name_text = (Text_t){.tag=TEXT_ASCII, .length=(int64_t)strlen(name), .ascii=name};
Array$insert(&names, &name_text, I_small(0), sizeof(Text_t));
}
} else {
const char *name = codepoint_name((ucs4_t)grapheme);
Text_t name_text = (Text_t){.tag=TEXT_ASCII, .length=(int64_t)strlen(name), .ascii=name};
Array$insert(&names, &name_text, I_small(0), sizeof(Text_t));
}
}
return names;
}
public Text_t Text$from_codepoints(Array_t codepoints)
{
if (codepoints.stride != sizeof(int32_t))
Array$compact(&codepoints, sizeof(int32_t));
return text_from_u32(codepoints.data, codepoints.length, true);
}
public OptionalText_t Text$from_codepoint_names(Array_t codepoint_names)
{
Array_t codepoints = {};
for (int64_t i = 0; i < codepoint_names.length; i++) {
Text_t *name = ((Text_t*)(codepoint_names.data + i*codepoint_names.stride));
const char *name_str = Text$as_c_string(*name);
ucs4_t codepoint = unicode_name_character(name_str);
if (codepoint == UNINAME_INVALID)
return NONE_TEXT;
Array$insert(&codepoints, &codepoint, I_small(0), sizeof(ucs4_t));
}
return Text$from_codepoints(codepoints);
}
public OptionalText_t Text$from_bytes(Array_t bytes)
{
if (bytes.stride != sizeof(int8_t))
Array$compact(&bytes, sizeof(int8_t));
int8_t nul = 0;
Array$insert(&bytes, &nul, I_small(0), sizeof(int8_t));
return Text$from_str(bytes.data);
}
public Array_t Text$lines(Text_t text)
{
Array_t lines = {};
TextIter_t state = {text, 0, 0};
for (int64_t i = 0, line_start = 0; i < text.length; i++) {
int32_t grapheme = Text$get_grapheme_fast(&state, i);
if (grapheme == '\r' && Text$get_grapheme_fast(&state, i + 1) == '\n') { // CRLF
Text_t line = Text$slice(text, I(line_start+1), I(i));
Array$insert(&lines, &line, I_small(0), sizeof(Text_t));
i += 1; // skip one extra for CR
line_start = i + 1;
} else if (grapheme == '\n') { // newline
Text_t line = Text$slice(text, I(line_start+1), I(i));
Array$insert(&lines, &line, I_small(0), sizeof(Text_t));
line_start = i + 1;
} else if (i == text.length-1 && line_start != i) { // last line
Text_t line = Text$slice(text, I(line_start+1), I(i+1));
Array$insert(&lines, &line, I_small(0), sizeof(Text_t));
}
}
return lines;
}
public const TypeInfo_t Text$info = {
.size=sizeof(Text_t),
.align=__alignof__(Text_t),
.tag=TextInfo,
.TextInfo={.lang="Text"},
};
public Pattern_t Pattern$escape_text(Text_t text)
{
// TODO: optimize for ASCII and short strings
Array_t graphemes = {.atomic=1};
#define add_char(c) Array$insert_value(&graphemes, (ucs4_t)c, I_small(0), sizeof(ucs4_t))
#define add_str(s) ({ for (const char *_c = s; *_c; ++_c) Array$insert_value(&graphemes, (ucs4_t)*_c, I_small(0), sizeof(ucs4_t)); })
TextIter_t state = {text, 0, 0};
for (int64_t i = 0; i < text.length; i++) {
int32_t g = Text$get_grapheme_fast(&state, i);
ucs4_t g0 = g < 0 ? GRAPHEME_CODEPOINTS(g)[0] : (ucs4_t)g;
if (g == '{') {
add_str("{1{}");
} else if (g0 == '?'
|| uc_is_property_quotation_mark(g0)
|| (uc_is_property_paired_punctuation(g0) && uc_is_property_left_of_pair(g0))) {
add_char('{');
add_char('1');
add_char(g);
add_char('}');
} else {
add_char(g);
}
}
return (Text_t){.length=graphemes.length, .tag=TEXT_GRAPHEMES, .graphemes=graphemes.data};
#undef add_str
#undef add_char
#undef add_escaped
}
// vim: ts=4 sw=0 et cino=L2,l1,(0,W4,m1,\:0