tomo/typecheck.c

1568 lines
70 KiB
C

// Logic for getting a type from an AST node
#include <ctype.h>
#include <gc.h>
#include <glob.h>
#include <signal.h>
#include <stdarg.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include "ast.h"
#include "cordhelpers.h"
#include "environment.h"
#include "parse.h"
#include "stdlib/patterns.h"
#include "stdlib/tables.h"
#include "stdlib/text.h"
#include "stdlib/util.h"
#include "typecheck.h"
#include "types.h"
type_t *parse_type_ast(env_t *env, type_ast_t *ast)
{
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wswitch-default"
switch (ast->tag) {
case VarTypeAST: {
const char *name = Match(ast, VarTypeAST)->name;
type_t *t = Table$str_get(*env->types, name);
if (t) return t;
while (strchr(name, '.')) {
char *module_name = GC_strndup(name, strcspn(name, "."));
binding_t *b = get_binding(env, module_name);
if (!b || b->type->tag != ModuleType)
code_err(ast, "I don't know a module with the name '%s'", module_name);
env_t *imported = Table$str_get(*env->imports, Match(b->type, ModuleType)->name);
assert(imported);
env = imported;
name = strchr(name, '.') + 1;
t = Table$str_get(*env->types, name);
if (t) return t;
}
code_err(ast, "I don't know a type with the name '%s'", name);
}
case PointerTypeAST: {
auto ptr = Match(ast, PointerTypeAST);
type_t *pointed_t = parse_type_ast(env, ptr->pointed);
if (pointed_t->tag == VoidType)
code_err(ast, "Void pointers are not supported. You probably meant 'Memory' instead of 'Void'");
return Type(PointerType, .pointed=pointed_t, .is_stack=ptr->is_stack);
}
case ArrayTypeAST: {
type_ast_t *item_type = Match(ast, ArrayTypeAST)->item;
type_t *item_t = parse_type_ast(env, item_type);
if (!item_t) code_err(item_type, "I can't figure out what this type is.");
if (has_stack_memory(item_t))
code_err(item_type, "Arrays can't have stack references because the array may outlive the stack frame.");
if (type_size(item_t) > ARRAY_MAX_STRIDE)
code_err(ast, "This array holds items that take up %ld bytes, but the maximum supported size is %ld bytes. Consider using an array of pointers instead.",
type_size(item_t), ARRAY_MAX_STRIDE);
return Type(ArrayType, .item_type=item_t);
}
case SetTypeAST: {
type_ast_t *item_type = Match(ast, SetTypeAST)->item;
type_t *item_t = parse_type_ast(env, item_type);
if (!item_t) code_err(item_type, "I can't figure out what this type is.");
if (has_stack_memory(item_t))
code_err(item_type, "Sets can't have stack references because the array may outlive the stack frame.");
if (type_size(item_t) > ARRAY_MAX_STRIDE)
code_err(ast, "This set holds items that take up %ld bytes, but the maximum supported size is %ld bytes. Consider using an set of pointers instead.",
type_size(item_t), ARRAY_MAX_STRIDE);
return Type(SetType, .item_type=item_t);
}
case TableTypeAST: {
auto table_type = Match(ast, TableTypeAST);
type_ast_t *key_type_ast = table_type->key;
type_t *key_type = parse_type_ast(env, key_type_ast);
if (!key_type) code_err(key_type_ast, "I can't figure out what type this is.");
if (has_stack_memory(key_type))
code_err(key_type_ast, "Tables can't have stack references because the array may outlive the stack frame.");
if (table_type->value) {
type_t *val_type = parse_type_ast(env, table_type->value);
if (!val_type) code_err(table_type->value, "I can't figure out what type this is.");
if (has_stack_memory(val_type))
code_err(table_type->value, "Tables can't have stack references because the array may outlive the stack frame.");
else if (val_type->tag == OptionalType)
code_err(ast, "Tables with optional-typed values are not currently supported");
return Type(TableType, .key_type=key_type, .value_type=val_type, .env=env);
} else if (table_type->default_value) {
type_t *t = Type(TableType, .key_type=key_type,
.value_type=get_type(env, table_type->default_value), .default_value=table_type->default_value,
.env=env);
if (has_stack_memory(t))
code_err(ast, "Tables can't have stack references because the array may outlive the stack frame.");
return t;
} else {
code_err(ast, "No value type or default value!");
}
}
case FunctionTypeAST: {
auto fn = Match(ast, FunctionTypeAST);
type_t *ret_t = fn->ret ? parse_type_ast(env, fn->ret) : Type(VoidType);
if (has_stack_memory(ret_t))
code_err(fn->ret, "Functions are not allowed to return stack references, because the reference may no longer exist on the stack.");
arg_t *type_args = NULL;
for (arg_ast_t *arg = fn->args; arg; arg = arg->next) {
type_args = new(arg_t, .name=arg->name, .next=type_args);
if (arg->type) {
type_args->type = parse_type_ast(env, arg->type);
} else {
type_args->default_val = arg->value;
type_args->type = get_type(env, arg->value);
}
}
REVERSE_LIST(type_args);
return Type(ClosureType, Type(FunctionType, .args=type_args, .ret=ret_t));
}
case OptionalTypeAST: {
auto opt = Match(ast, OptionalTypeAST);
type_t *t = parse_type_ast(env, opt->type);
if (t->tag == VoidType || t->tag == AbortType || t->tag == ReturnType)
code_err(ast, "Optional %T types are not supported.", t);
else if (t->tag == OptionalType)
code_err(ast, "Nested optional types are not currently supported");
return Type(OptionalType, .type=t);
}
case MutexedTypeAST: {
type_ast_t *mutexed = Match(ast, MutexedTypeAST)->type;
type_t *t = parse_type_ast(env, mutexed);
if (t->tag == VoidType || t->tag == AbortType || t->tag == ReturnType)
code_err(ast, "Mutexed %T types are not supported.", t);
return Type(MutexedType, .type=t);
}
case UnknownTypeAST: code_err(ast, "I don't know how to get this type");
}
#pragma GCC diagnostic pop
errx(1, "Unreachable");
}
static PUREFUNC bool risks_zero_or_inf(ast_t *ast)
{
switch (ast->tag) {
case Int: {
const char *str = Match(ast, Int)->str;
OptionalInt_t int_val = Int$from_str(str);
return (int_val.small == 0x1); // zero
}
case Num: {
return Match(ast, Num)->n == 0.0;
}
case BinaryOp: {
auto binop = Match(ast, BinaryOp);
if (binop->op == BINOP_MULT || binop->op == BINOP_DIVIDE || binop->op == BINOP_MIN || binop->op == BINOP_MAX)
return risks_zero_or_inf(binop->lhs) || risks_zero_or_inf(binop->rhs);
else
return true;
}
default: return true;
}
}
PUREFUNC type_t *get_math_type(env_t *env, ast_t *ast, type_t *lhs_t, type_t *rhs_t)
{
(void)env;
switch (compare_precision(lhs_t, rhs_t)) {
case NUM_PRECISION_EQUAL: case NUM_PRECISION_MORE: return lhs_t;
case NUM_PRECISION_LESS: return rhs_t;
default: code_err(ast, "Math operations between %T and %T are not supported", lhs_t, rhs_t);
}
}
static env_t *load_module(env_t *env, ast_t *module_ast)
{
auto use = Match(module_ast, Use);
switch (use->what) {
case USE_LOCAL: {
const char *resolved_path = resolve_path(use->path, module_ast->file->filename, module_ast->file->filename);
env_t *module_env = Table$str_get(*env->imports, resolved_path);
if (module_env)
return module_env;
if (!resolved_path)
code_err(module_ast, "No such file exists: \"%s\"", use->path);
ast_t *ast = parse_file(resolved_path, NULL);
if (!ast) errx(1, "Could not compile file %s", resolved_path);
return load_module_env(env, ast);
}
case USE_MODULE: {
glob_t tm_files;
if (glob(heap_strf("~/.local/share/tomo/installed/%s/[!._0-9]*.tm", use->path), GLOB_TILDE, NULL, &tm_files) != 0)
code_err(module_ast, "Could not find library");
env_t *module_env = fresh_scope(env);
Table$str_set(env->imports, use->path, module_env);
char *libname_id = Text$as_c_string(
Text$replace(Text$from_str(use->path), Pattern("{1+ !alphanumeric}"), Text("_"), Pattern(""), false));
module_env->libname = libname_id;
for (size_t i = 0; i < tm_files.gl_pathc; i++) {
const char *filename = tm_files.gl_pathv[i];
ast_t *ast = parse_file(filename, NULL);
if (!ast) errx(1, "Could not compile file %s", filename);
env_t *module_file_env = fresh_scope(module_env);
char *file_prefix = file_base_id(filename);
module_file_env->namespace = new(namespace_t, .name=file_prefix);
env_t *subenv = load_module_env(module_file_env, ast);
for (int64_t j = 0; j < subenv->locals->entries.length; j++) {
struct {
const char *name; binding_t *binding;
} *entry = subenv->locals->entries.data + j*subenv->locals->entries.stride;
Table$str_set(module_env->locals, entry->name, entry->binding);
}
}
globfree(&tm_files);
return module_env;
}
default: return NULL;
}
}
void prebind_statement(env_t *env, ast_t *statement)
{
switch (statement->tag) {
case DocTest: {
prebind_statement(env, Match(statement, DocTest)->expr);
break;
}
case StructDef: {
auto def = Match(statement, StructDef);
if (get_binding(env, def->name))
code_err(statement, "A %T called '%s' has already been defined", get_binding(env, def->name)->type, def->name);
env_t *ns_env = namespace_env(env, def->name);
type_t *type = Type(StructType, .name=def->name, .opaque=true, .external=def->external, .env=ns_env); // placeholder
Table$str_set(env->types, def->name, type);
set_binding(env, def->name, Type(TypeInfoType, .name=def->name, .type=type, .env=ns_env),
CORD_all(namespace_prefix(env, env->namespace), def->name, "$$info"));
for (ast_list_t *stmt = def->namespace ? Match(def->namespace, Block)->statements : NULL; stmt; stmt = stmt->next)
prebind_statement(ns_env, stmt->ast);
break;
}
case EnumDef: {
auto def = Match(statement, EnumDef);
if (get_binding(env, def->name))
code_err(statement, "A %T called '%s' has already been defined", get_binding(env, def->name)->type, def->name);
env_t *ns_env = namespace_env(env, def->name);
type_t *type = Type(EnumType, .name=def->name, .opaque=true, .env=ns_env); // placeholder
Table$str_set(env->types, def->name, type);
set_binding(env, def->name, Type(TypeInfoType, .name=def->name, .type=type, .env=ns_env),
CORD_all(namespace_prefix(env, env->namespace), def->name, "$$info"));
for (ast_list_t *stmt = def->namespace ? Match(def->namespace, Block)->statements : NULL; stmt; stmt = stmt->next)
prebind_statement(ns_env, stmt->ast);
break;
}
case LangDef: {
auto def = Match(statement, LangDef);
if (get_binding(env, def->name))
code_err(statement, "A %T called '%s' has already been defined", get_binding(env, def->name)->type, def->name);
env_t *ns_env = namespace_env(env, def->name);
type_t *type = Type(TextType, .lang=def->name, .env=ns_env);
Table$str_set(env->types, def->name, type);
set_binding(env, def->name, Type(TypeInfoType, .name=def->name, .type=type, .env=ns_env),
CORD_all(namespace_prefix(env, env->namespace), def->name, "$$info"));
for (ast_list_t *stmt = def->namespace ? Match(def->namespace, Block)->statements : NULL; stmt; stmt = stmt->next)
prebind_statement(ns_env, stmt->ast);
break;
}
default: break;
}
}
void bind_statement(env_t *env, ast_t *statement)
{
switch (statement->tag) {
case DocTest: {
bind_statement(env, Match(statement, DocTest)->expr);
break;
}
case Declare: {
auto decl = Match(statement, Declare);
const char *name = Match(decl->var, Var)->name;
if (streq(name, "_")) // Explicit discard
return;
if (get_binding(env, name))
code_err(decl->var, "A %T called '%s' has already been defined", get_binding(env, name)->type, name);
bind_statement(env, decl->value);
type_t *type = get_type(env, decl->value);
if (!type)
code_err(decl->value, "I couldn't figure out the type of this value");
if (type->tag == FunctionType)
type = Type(ClosureType, type);
CORD prefix = namespace_prefix(env, env->namespace);
CORD code = CORD_cat(prefix ? prefix : "$", name);
set_binding(env, name, type, code);
break;
}
case FunctionDef: {
auto def = Match(statement, FunctionDef);
const char *name = Match(def->name, Var)->name;
type_t *type = get_function_def_type(env, statement);
// binding_t *clobber = get_binding(env, name);
// if (clobber)
// code_err(def->name, "A %T called '%s' has already been defined", clobber->type, name);
CORD code = CORD_all(namespace_prefix(env, env->namespace), name);
set_binding(env, name, type, code);
break;
}
case ConvertDef: {
type_t *type = get_function_def_type(env, statement);
type_t *ret_t = Match(type, FunctionType)->ret;
const char *name = get_type_name(ret_t);
if (!name)
code_err(statement, "Conversions are only supported for text, struct, and enum types, not %T", ret_t);
CORD code = CORD_asprintf("%r%r$%ld", namespace_prefix(env, env->namespace), name,
get_line_number(statement->file, statement->start));
binding_t binding = {.type=type, .code=code};
env_t *type_ns = get_namespace_by_type(env, ret_t);
Array$insert(&type_ns->namespace->constructors, &binding, I(0), sizeof(binding));
break;
}
case StructDef: {
auto def = Match(statement, StructDef);
env_t *ns_env = namespace_env(env, def->name);
type_t *type = Table$str_get(*env->types, def->name);
if (!type) code_err(statement, "Couldn't find type!");
assert(type);
arg_t *fields = NULL;
for (arg_ast_t *field_ast = def->fields; field_ast; field_ast = field_ast->next) {
type_t *field_t = get_arg_ast_type(env, field_ast);
type_t *non_opt_field_t = field_t->tag == OptionalType ? Match(field_t, OptionalType)->type : field_t;
if ((non_opt_field_t->tag == StructType && Match(non_opt_field_t, StructType)->opaque)
|| (non_opt_field_t->tag == EnumType && Match(non_opt_field_t, EnumType)->opaque)) {
file_t *file = NULL;
const char *start = NULL, *end = NULL;
if (field_ast->type) {
file = field_ast->type->file, start = field_ast->type->start, end = field_ast->type->end;
} else if (field_ast->value) {
file = field_ast->value->file, start = field_ast->value->start, end = field_ast->value->end;
}
if (non_opt_field_t == type)
compiler_err(file, start, end, "This is a recursive struct that would be infinitely large. Maybe you meant to use an optional '@%T?' pointer instead?", type);
else
compiler_err(file, start, end, "I'm still in the process of defining the fields of %T, so I don't know how to use it as a member."
"\nTry using a @%T pointer for this field.",
field_t, field_t);
}
fields = new(arg_t, .name=field_ast->name, .type=field_t, .default_val=field_ast->value, .next=fields);
}
REVERSE_LIST(fields);
type->__data.StructType.fields = fields; // populate placeholder
type->__data.StructType.opaque = false;
for (ast_list_t *stmt = def->namespace ? Match(def->namespace, Block)->statements : NULL; stmt; stmt = stmt->next)
bind_statement(ns_env, stmt->ast);
break;
}
case EnumDef: {
auto def = Match(statement, EnumDef);
env_t *ns_env = namespace_env(env, def->name);
type_t *type = Table$str_get(*env->types, def->name);
assert(type);
tag_t *tags = NULL;
int64_t next_tag = 1;
for (tag_ast_t *tag_ast = def->tags; tag_ast; tag_ast = tag_ast->next) {
arg_t *fields = NULL;
for (arg_ast_t *field_ast = tag_ast->fields; field_ast; field_ast = field_ast->next) {
type_t *field_t = get_arg_ast_type(env, field_ast);
type_t *non_opt_field_t = field_t->tag == OptionalType ? Match(field_t, OptionalType)->type : field_t;
if ((non_opt_field_t->tag == StructType && Match(non_opt_field_t, StructType)->opaque)
|| (non_opt_field_t->tag == EnumType && Match(non_opt_field_t, EnumType)->opaque)) {
file_t *file = NULL;
const char *start = NULL, *end = NULL;
if (field_ast->type) {
file = field_ast->type->file, start = field_ast->type->start, end = field_ast->type->end;
} else if (field_ast->value) {
file = field_ast->value->file, start = field_ast->value->start, end = field_ast->value->end;
}
if (non_opt_field_t == type)
compiler_err(file, start, end, "This is a recursive enum that would be infinitely large. Maybe you meant to use an optional '@%T?' pointer instead?", type);
else
compiler_err(file, start, end, "I'm still in the process of defining the fields of %T, so I don't know how to use it as a member."
"\nTry using a @%T pointer for this field.",
field_t, field_t);
}
fields = new(arg_t, .name=field_ast->name, .type=field_t, .default_val=field_ast->value, .next=fields);
}
REVERSE_LIST(fields);
env_t *member_ns = namespace_env(env, heap_strf("%s$%s", def->name, tag_ast->name));
type_t *tag_type = Type(StructType, .name=heap_strf("%s$%s", def->name, tag_ast->name), .fields=fields, .env=member_ns);
tags = new(tag_t, .name=tag_ast->name, .tag_value=(next_tag++), .type=tag_type, .next=tags);
}
REVERSE_LIST(tags);
type->__data.EnumType.tags = tags;
type->__data.EnumType.opaque = false;
for (tag_t *tag = tags; tag; tag = tag->next) {
if (Match(tag->type, StructType)->fields) { // Constructor:
type_t *constructor_t = Type(FunctionType, .args=Match(tag->type, StructType)->fields, .ret=type);
set_binding(ns_env, tag->name, constructor_t, CORD_all(namespace_prefix(env, env->namespace), def->name, "$tagged$", tag->name));
} else { // Empty singleton value:
CORD code = CORD_all("((", namespace_prefix(env, env->namespace), def->name, "$$type){", namespace_prefix(env, env->namespace), def->name, "$tag$", tag->name, "})");
set_binding(ns_env, tag->name, type, code);
}
Table$str_set(env->types, heap_strf("%s$%s", def->name, tag->name), tag->type);
}
for (ast_list_t *stmt = def->namespace ? Match(def->namespace, Block)->statements : NULL; stmt; stmt = stmt->next) {
bind_statement(ns_env, stmt->ast);
}
break;
}
case LangDef: {
auto def = Match(statement, LangDef);
env_t *ns_env = namespace_env(env, def->name);
type_t *type = Type(TextType, .lang=def->name, .env=ns_env);
Table$str_set(env->types, def->name, type);
set_binding(ns_env, "from_text",
Type(FunctionType, .args=new(arg_t, .name="text", .type=TEXT_TYPE), .ret=type),
CORD_all("(", namespace_prefix(env, env->namespace), def->name, "$$type)"));
for (ast_list_t *stmt = def->namespace ? Match(def->namespace, Block)->statements : NULL; stmt; stmt = stmt->next)
bind_statement(ns_env, stmt->ast);
break;
}
case Use: {
env_t *module_env = load_module(env, statement);
if (!module_env) break;
for (Table_t *bindings = module_env->locals; bindings != module_env->globals; bindings = bindings->fallback) {
for (int64_t i = 1; i <= Table$length(*bindings); i++) {
struct {const char *name; binding_t *binding; } *entry = Table$entry(*bindings, i);
if (entry->name[0] == '_' || streq(entry->name, "main"))
continue;
binding_t *b = Table$str_get(*env->locals, entry->name);
if (!b)
Table$str_set(env->locals, entry->name, entry->binding);
else if (b != entry->binding)
code_err(statement, "This module imports a symbol called '%s', which would clobber another variable", entry->name);
}
}
for (int64_t i = 1; i <= Table$length(*module_env->types); i++) {
struct {const char *name; type_t *type; } *entry = Table$entry(*module_env->types, i);
if (entry->name[0] == '_')
continue;
if (Table$str_get(*env->types, entry->name))
continue;
Table$str_set(env->types, entry->name, entry->type);
}
ast_t *var = Match(statement, Use)->var;
if (var) {
type_t *type = get_type(env, statement);
assert(type);
set_binding(env, Match(var, Var)->name, type, CORD_EMPTY);
}
break;
}
case Extern: {
auto ext = Match(statement, Extern);
type_t *t = parse_type_ast(env, ext->type);
if (t->tag == ClosureType)
t = Match(t, ClosureType)->fn;
set_binding(env, ext->name, t, ext->name);
break;
}
default: break;
}
}
type_t *get_function_def_type(env_t *env, ast_t *ast)
{
arg_ast_t *arg_asts = ast->tag == FunctionDef ? Match(ast, FunctionDef)->args : Match(ast, ConvertDef)->args;
type_ast_t *ret_type = ast->tag == FunctionDef ? Match(ast, FunctionDef)->ret_type : Match(ast, ConvertDef)->ret_type;
arg_t *args = NULL;
env_t *scope = fresh_scope(env);
for (arg_ast_t *arg = arg_asts; arg; arg = arg->next) {
type_t *t = arg->type ? parse_type_ast(env, arg->type) : get_type(env, arg->value);
args = new(arg_t, .name=arg->name, .type=t, .default_val=arg->value, .next=args);
set_binding(scope, arg->name, t, CORD_EMPTY);
}
REVERSE_LIST(args);
type_t *ret = ret_type ? parse_type_ast(scope, ret_type) : Type(VoidType);
if (has_stack_memory(ret))
code_err(ast, "Functions can't return stack references because the reference may outlive its stack frame.");
return Type(FunctionType, .args=args, .ret=ret);
}
type_t *get_method_type(env_t *env, ast_t *self, const char *name)
{
binding_t *b = get_namespace_binding(env, self, name);
if (!b || !b->type)
code_err(self, "No such method: %T:%s(...)", get_type(env, self), name);
return b->type;
}
env_t *when_clause_scope(env_t *env, type_t *subject_t, when_clause_t *clause)
{
if (clause->pattern->tag == Var || subject_t->tag != EnumType)
return env;
if (clause->pattern->tag != FunctionCall || Match(clause->pattern, FunctionCall)->fn->tag != Var)
code_err(clause->pattern, "I only support variables and constructors for pattern matching %T types in a 'when' block", subject_t);
auto fn = Match(clause->pattern, FunctionCall);
const char *tag_name = Match(fn->fn, Var)->name;
type_t *tag_type = NULL;
tag_t * const tags = Match(subject_t, EnumType)->tags;
for (tag_t *tag = tags; tag; tag = tag->next) {
if (streq(tag->name, tag_name)) {
tag_type = tag->type;
break;
}
}
if (!tag_type)
code_err(clause->pattern, "There is no tag '%s' for the type %T", tag_name, subject_t);
if (!fn->args)
return env;
env_t *scope = fresh_scope(env);
auto tag_struct = Match(tag_type, StructType);
if (fn->args && !fn->args->next && tag_struct->fields && tag_struct->fields->next) {
if (fn->args->value->tag != Var)
code_err(fn->args->value, "I expected a variable here");
set_binding(scope, Match(fn->args->value, Var)->name, tag_type, CORD_EMPTY);
return scope;
}
arg_t *field = tag_struct->fields;
for (arg_ast_t *var = fn->args; var || field; var = var ? var->next : var) {
if (!var)
code_err(clause->pattern, "The field %T.%s.%s wasn't accounted for", subject_t, tag_name, field->name);
if (!field)
code_err(var->value, "This is one more field than %T has", subject_t);
if (var->value->tag != Var)
code_err(var->value, "I expected this to be a plain variable so I could bind it to a value");
if (!streq(Match(var->value, Var)->name, "_"))
set_binding(scope, Match(var->value, Var)->name, field->type, CORD_EMPTY);
field = field->next;
}
return scope;
}
type_t *get_clause_type(env_t *env, type_t *subject_t, when_clause_t *clause)
{
env_t *scope = when_clause_scope(env, subject_t, clause);
return get_type(scope, clause->body);
}
type_t *get_type(env_t *env, ast_t *ast)
{
if (!ast) return NULL;
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wswitch-default"
switch (ast->tag) {
case None: {
if (!Match(ast, None)->type)
return Type(OptionalType, .type=NULL);
type_t *t = parse_type_ast(env, Match(ast, None)->type);
if (t->tag == OptionalType)
code_err(ast, "Nested optional types are not supported. This should be: `none:%T`", Match(t, OptionalType)->type);
return Type(OptionalType, .type=t);
}
case Bool: {
return Type(BoolType);
}
case Int: {
return Type(BigIntType);
}
case Num: {
return Type(NumType, .bits=TYPE_NBITS64);
}
case HeapAllocate: {
type_t *pointed = get_type(env, Match(ast, HeapAllocate)->value);
if (has_stack_memory(pointed))
code_err(ast, "Stack references cannot be moved to the heap because they may outlive the stack frame they were created in.");
return Type(PointerType, .pointed=pointed);
}
case StackReference: {
// Supported:
// &variable
// &struct_variable.field.(...)
// &struct_ptr.field.(...)
// &[10, 20, 30]; &{key:value}; &{10, 20, 30}
// &Foo(...)
// &(expression)
// Not supported:
// &ptr[]
// &list[index]
// &table[key]
// &(expression).field
// &optional_struct_ptr.field
ast_t *value = Match(ast, StackReference)->value;
switch (value->tag) {
case FieldAccess: {
ast_t *base = value;
while (base->tag == FieldAccess)
base = Match(base, FieldAccess)->fielded;
type_t *ref_type = get_type(env, value);
type_t *base_type = get_type(env, base);
if (base_type->tag == OptionalType) {
code_err(base, "This value might be null, so it can't be safely dereferenced");
} else if (base_type->tag == PointerType) {
auto ptr = Match(base_type, PointerType);
return Type(PointerType, .pointed=ref_type, .is_stack=ptr->is_stack);
} else if (base->tag == Var) {
return Type(PointerType, .pointed=ref_type, .is_stack=true);
}
code_err(ast, "'&' stack references can only be used on the fields of pointers and local variables");
}
case Index:
code_err(ast, "'&' stack references are not supported for array or table indexing");
default:
return Type(PointerType, .pointed=get_type(env, value), .is_stack=true);
}
}
case Optional: {
ast_t *value = Match(ast, Optional)->value;
type_t *t = get_type(env, value);
if (t->tag == OptionalType)
code_err(ast, "This value is already optional, it can't be converted to optional");
return Type(OptionalType, .type=t);
}
case NonOptional: {
ast_t *value = Match(ast, NonOptional)->value;
type_t *t = get_type(env, value);
if (t->tag != OptionalType)
code_err(value, "This value is not optional. Only optional values can use the '!' operator.");
return Match(t, OptionalType)->type;
}
case TextLiteral: return TEXT_TYPE;
case TextJoin: {
const char *lang = Match(ast, TextJoin)->lang;
if (lang) {
binding_t *b = get_binding(env, lang);
if (!b || b->type->tag != TypeInfoType || Match(b->type, TypeInfoType)->type->tag != TextType)
code_err(ast, "There is no text language called '%s'", lang);
return Match(get_binding(env, lang)->type, TypeInfoType)->type;
} else {
return TEXT_TYPE;
}
}
case Var: {
auto var = Match(ast, Var);
binding_t *b = get_binding(env, var->name);
if (b) return b->type;
code_err(ast, "I don't know what \"%s\" refers to", var->name);
}
case Array: {
auto array = Match(ast, Array);
type_t *item_type = NULL;
if (array->item_type) {
item_type = parse_type_ast(env, array->item_type);
} else if (array->items) {
for (ast_list_t *item = array->items; item; item = item->next) {
ast_t *item_ast = item->ast;
env_t *scope = env;
while (item_ast->tag == Comprehension) {
auto comp = Match(item_ast, Comprehension);
scope = for_scope(
scope, FakeAST(For, .iter=comp->iter, .vars=comp->vars));
item_ast = comp->expr;
}
type_t *t2 = get_type(scope, item_ast);
type_t *merged = item_type ? type_or_type(item_type, t2) : t2;
if (!merged)
code_err(item->ast,
"This array item has type %T, which is different from earlier array items which have type %T",
t2, item_type);
item_type = merged;
}
} else {
code_err(ast, "I can't figure out what type this array has because it has no members or explicit type");
}
if (has_stack_memory(item_type))
code_err(ast, "Arrays cannot hold stack references, because the array may outlive the stack frame the reference was created in.");
return Type(ArrayType, .item_type=item_type);
}
case Set: {
auto set = Match(ast, Set);
type_t *item_type = NULL;
if (set->item_type) {
item_type = parse_type_ast(env, set->item_type);
} else {
for (ast_list_t *item = set->items; item; item = item->next) {
ast_t *item_ast = item->ast;
env_t *scope = env;
while (item_ast->tag == Comprehension) {
auto comp = Match(item_ast, Comprehension);
scope = for_scope(
scope, FakeAST(For, .iter=comp->iter, .vars=comp->vars));
item_ast = comp->expr;
}
type_t *this_item_type = get_type(scope, item_ast);
type_t *item_merged = type_or_type(item_type, this_item_type);
if (!item_merged)
code_err(item_ast,
"This set item has type %T, which is different from earlier set items which have type %T",
this_item_type, item_type);
item_type = item_merged;
}
}
if (has_stack_memory(item_type))
code_err(ast, "Sets cannot hold stack references because the set may outlive the reference's stack frame.");
return Type(SetType, .item_type=item_type);
}
case Table: {
auto table = Match(ast, Table);
type_t *key_type = NULL, *value_type = NULL;
if (table->key_type && table->value_type) {
key_type = parse_type_ast(env, table->key_type);
value_type = parse_type_ast(env, table->value_type);
} else if (table->key_type && table->default_value) {
key_type = parse_type_ast(env, table->key_type);
value_type = get_type(env, table->default_value);
} else {
for (ast_list_t *entry = table->entries; entry; entry = entry->next) {
ast_t *entry_ast = entry->ast;
env_t *scope = env;
while (entry_ast->tag == Comprehension) {
auto comp = Match(entry_ast, Comprehension);
scope = for_scope(
scope, FakeAST(For, .iter=comp->iter, .vars=comp->vars));
entry_ast = comp->expr;
}
auto e = Match(entry_ast, TableEntry);
type_t *key_t = get_type(scope, e->key);
type_t *value_t = get_type(scope, e->value);
type_t *key_merged = key_type ? type_or_type(key_type, key_t) : key_t;
if (!key_merged)
code_err(entry->ast,
"This table entry has type %T, which is different from earlier table entries which have type %T",
key_t, key_type);
key_type = key_merged;
type_t *val_merged = value_type ? type_or_type(value_type, value_t) : value_t;
if (!val_merged)
code_err(entry->ast,
"This table entry has type %T, which is different from earlier table entries which have type %T",
value_t, value_type);
value_type = val_merged;
}
}
if (has_stack_memory(key_type) || has_stack_memory(value_type))
code_err(ast, "Tables cannot hold stack references because the table may outlive the reference's stack frame.");
return Type(TableType, .key_type=key_type, .value_type=value_type, .default_value=table->default_value, .env=env);
}
case TableEntry: {
code_err(ast, "Table entries should not be typechecked directly");
}
case Comprehension: {
auto comp = Match(ast, Comprehension);
env_t *scope = for_scope(env, FakeAST(For, .iter=comp->iter, .vars=comp->vars));
if (comp->expr->tag == Comprehension) {
return get_type(scope, comp->expr);
} else if (comp->expr->tag == TableEntry) {
auto e = Match(comp->expr, TableEntry);
return Type(TableType, .key_type=get_type(scope, e->key), .value_type=get_type(scope, e->value), .env=env);
} else {
return Type(ArrayType, .item_type=get_type(scope, comp->expr));
}
}
case FieldAccess: {
auto access = Match(ast, FieldAccess);
type_t *fielded_t = get_type(env, access->fielded);
if (fielded_t->tag == ModuleType) {
const char *name = Match(fielded_t, ModuleType)->name;
env_t *module_env = Table$str_get(*env->imports, name);
if (!module_env) code_err(access->fielded, "I couldn't find the environment for the module %s", name);
return get_type(module_env, WrapAST(ast, Var, access->field));
} else if (fielded_t->tag == TypeInfoType) {
auto info = Match(fielded_t, TypeInfoType);
assert(info->env);
binding_t *b = get_binding(info->env, access->field);
if (!b) code_err(ast, "I couldn't find the field '%s' on this type", access->field);
return b->type;
}
type_t *field_t = get_field_type(fielded_t, access->field);
if (!field_t)
code_err(ast, "%T objects don't have a field called '%s'", fielded_t, access->field);
return field_t;
}
case Index: {
auto indexing = Match(ast, Index);
type_t *indexed_t = get_type(env, indexing->indexed);
if (indexed_t->tag == OptionalType && !indexing->index)
code_err(ast, "You're attempting to dereference a value whose type indicates it could be null");
if (indexed_t->tag == PointerType && !indexing->index)
return Match(indexed_t, PointerType)->pointed;
type_t *value_t = value_type(indexed_t);
if (value_t->tag == ArrayType) {
if (!indexing->index) return indexed_t;
type_t *index_t = get_type(env, indexing->index);
if (index_t->tag == IntType || index_t->tag == BigIntType || index_t->tag == ByteType)
return Match(value_t, ArrayType)->item_type;
code_err(indexing->index, "I only know how to index lists using integers, not %T", index_t);
} else if (value_t->tag == TableType) {
auto table_type = Match(value_t, TableType);
if (table_type->default_value)
return get_type(env, table_type->default_value);
else if (table_type->value_type)
return Type(OptionalType, table_type->value_type);
else
code_err(indexing->indexed, "This type doesn't have a value type or a default value");
} else if (value_t->tag == TextType) {
return value_t;
} else {
code_err(ast, "I don't know how to index %T values", indexed_t);
}
}
case FunctionCall: {
auto call = Match(ast, FunctionCall);
type_t *fn_type_t = get_type(env, call->fn);
if (!fn_type_t)
code_err(call->fn, "I couldn't find this function");
if (fn_type_t->tag == TypeInfoType) {
type_t *t = Match(fn_type_t, TypeInfoType)->type;
binding_t *constructor = get_constructor(env, t, call->args);
if (constructor)
return t;
else if (t->tag == StructType || t->tag == IntType || t->tag == BigIntType || t->tag == NumType
|| t->tag == ByteType || t->tag == TextType || t->tag == CStringType || t->tag == MomentType)
return t; // Constructor
code_err(call->fn, "This is not a type that has a constructor");
}
if (fn_type_t->tag == ClosureType)
fn_type_t = Match(fn_type_t, ClosureType)->fn;
if (fn_type_t->tag != FunctionType)
code_err(call->fn, "This isn't a function, it's a %T", fn_type_t);
auto fn_type = Match(fn_type_t, FunctionType);
return fn_type->ret;
}
case MethodCall: {
auto call = Match(ast, MethodCall);
if (streq(call->name, "serialized")) // Data serialization
return Type(ArrayType, Type(ByteType));
type_t *self_value_t = value_type(get_type(env, call->self));
switch (self_value_t->tag) {
case ArrayType: {
type_t *item_type = Match(self_value_t, ArrayType)->item_type;
if (streq(call->name, "binary_search")) return INT_TYPE;
else if (streq(call->name, "by")) return self_value_t;
else if (streq(call->name, "clear")) return Type(VoidType);
else if (streq(call->name, "counts")) return Type(TableType, .key_type=item_type, .value_type=INT_TYPE);
else if (streq(call->name, "find")) return Type(OptionalType, .type=INT_TYPE);
else if (streq(call->name, "first")) return Type(OptionalType, .type=INT_TYPE);
else if (streq(call->name, "from")) return self_value_t;
else if (streq(call->name, "has")) return Type(BoolType);
else if (streq(call->name, "heap_pop")) return Type(OptionalType, .type=item_type);
else if (streq(call->name, "heap_push")) return Type(VoidType);
else if (streq(call->name, "heapify")) return Type(VoidType);
else if (streq(call->name, "insert")) return Type(VoidType);
else if (streq(call->name, "insert_all")) return Type(VoidType);
else if (streq(call->name, "pop")) return Type(OptionalType, .type=item_type);
else if (streq(call->name, "random")) return item_type;
else if (streq(call->name, "remove_at")) return Type(VoidType);
else if (streq(call->name, "remove_item")) return Type(VoidType);
else if (streq(call->name, "reversed")) return self_value_t;
else if (streq(call->name, "sample")) return self_value_t;
else if (streq(call->name, "shuffle")) return Type(VoidType);
else if (streq(call->name, "shuffled")) return self_value_t;
else if (streq(call->name, "slice")) return self_value_t;
else if (streq(call->name, "sort")) return Type(VoidType);
else if (streq(call->name, "sorted")) return self_value_t;
else if (streq(call->name, "to")) return self_value_t;
else if (streq(call->name, "unique")) return Type(SetType, .item_type=item_type);
else code_err(ast, "There is no '%s' method for arrays", call->name);
}
case SetType: {
if (streq(call->name, "add")) return Type(VoidType);
else if (streq(call->name, "add_all")) return Type(VoidType);
else if (streq(call->name, "clear")) return Type(VoidType);
else if (streq(call->name, "has")) return Type(BoolType);
else if (streq(call->name, "is_subset_of")) return Type(BoolType);
else if (streq(call->name, "is_superset_of")) return Type(BoolType);
else if (streq(call->name, "overlap")) return self_value_t;
else if (streq(call->name, "remove")) return Type(VoidType);
else if (streq(call->name, "remove_all")) return Type(VoidType);
else if (streq(call->name, "with")) return self_value_t;
else if (streq(call->name, "without")) return self_value_t;
else code_err(ast, "There is no '%s' method for sets", call->name);
}
case TableType: {
auto table = Match(self_value_t, TableType);
if (streq(call->name, "bump")) return Type(VoidType);
else if (streq(call->name, "clear")) return Type(VoidType);
else if (streq(call->name, "get")) return Type(OptionalType, .type=table->value_type);
else if (streq(call->name, "has")) return Type(BoolType);
else if (streq(call->name, "remove")) return Type(VoidType);
else if (streq(call->name, "set")) return Type(VoidType);
else if (streq(call->name, "sorted")) return self_value_t;
code_err(ast, "There is no '%s' method for %T tables", call->name, self_value_t);
}
default: {
type_t *fn_type_t = get_method_type(env, call->self, call->name);
if (!fn_type_t)
code_err(ast, "No such method!");
if (fn_type_t->tag != FunctionType)
code_err(ast, "This isn't a method, it's a %T", fn_type_t);
auto fn_type = Match(fn_type_t, FunctionType);
return fn_type->ret;
}
}
}
case Block: {
auto block = Match(ast, Block);
ast_list_t *last = block->statements;
if (!last)
return Type(VoidType);
while (last->next)
last = last->next;
// Early out if the type is knowable without any context from the block:
switch (last->ast->tag) {
case UpdateAssign: case Assign: case Declare: case FunctionDef: case ConvertDef: case StructDef: case EnumDef: case LangDef:
return Type(VoidType);
default: break;
}
env_t *block_env = fresh_scope(env);
for (ast_list_t *stmt = block->statements; stmt; stmt = stmt->next) {
prebind_statement(block_env, stmt->ast);
}
for (ast_list_t *stmt = block->statements; stmt; stmt = stmt->next) {
bind_statement(block_env, stmt->ast);
if (stmt->next) { // Check for unreachable code:
if (stmt->ast->tag == Return)
code_err(stmt->ast, "This statement will always return, so the rest of the code in this block is unreachable!");
type_t *statement_type = get_type(block_env, stmt->ast);
if (statement_type && statement_type->tag == AbortType && stmt->next)
code_err(stmt->ast, "This statement will always abort, so the rest of the code in this block is unreachable!");
}
}
return get_type(block_env, last->ast);
}
case Extern: {
return parse_type_ast(env, Match(ast, Extern)->type);
}
case Declare: case Assign: case DocTest: {
return Type(VoidType);
}
case Use: {
switch (Match(ast, Use)->what) {
case USE_LOCAL:
return Type(ModuleType, resolve_path(Match(ast, Use)->path, ast->file->filename, ast->file->filename));
default:
return Type(ModuleType, Match(ast, Use)->path);
}
}
case Return: {
ast_t *val = Match(ast, Return)->value;
if (env->fn_ret)
env = with_enum_scope(env, env->fn_ret);
return Type(ReturnType, .ret=(val ? get_type(env, val) : Type(VoidType)));
}
case Stop: case Skip: {
return Type(AbortType);
}
case Pass: case Defer: case PrintStatement: return Type(VoidType);
case Negative: {
ast_t *value = Match(ast, Negative)->value;
type_t *t = get_type(env, value);
if (t->tag == IntType || t->tag == NumType)
return t;
binding_t *b = get_namespace_binding(env, value, "negative");
if (b && b->type->tag == FunctionType) {
auto fn = Match(b->type, FunctionType);
if (fn->args && type_eq(t, get_arg_type(env, fn->args)) && type_eq(t, fn->ret))
return t;
}
code_err(ast, "I don't know how to get the negative value of type %T", t);
}
case Not: {
type_t *t = get_type(env, Match(ast, Not)->value);
if (t->tag == IntType || t->tag == NumType || t->tag == BoolType)
return t;
if (t->tag == OptionalType)
return Type(BoolType);
ast_t *value = Match(ast, Not)->value;
binding_t *b = get_namespace_binding(env, value, "negated");
if (b && b->type->tag == FunctionType) {
auto fn = Match(b->type, FunctionType);
if (fn->args && type_eq(t, get_arg_type(env, fn->args)) && type_eq(t, fn->ret))
return t;
}
code_err(ast, "I only know how to get 'not' of boolean, numeric, and optional pointer types, not %T", t);
}
case Mutexed: {
type_t *item_type = get_type(env, Match(ast, Mutexed)->value);
return Type(MutexedType, .type=item_type);
}
case Holding: {
ast_t *held = Match(ast, Holding)->mutexed;
type_t *held_type = get_type(env, held);
if (held_type->tag != MutexedType)
code_err(held, "This is a %t, not a mutexed value", held_type);
if (held->tag == Var) {
env = fresh_scope(env);
set_binding(env, Match(held, Var)->name, Type(PointerType, .pointed=Match(held_type, MutexedType)->type, .is_stack=true), CORD_EMPTY);
}
return get_type(env, Match(ast, Holding)->body);
}
case BinaryOp: {
auto binop = Match(ast, BinaryOp);
type_t *lhs_t = get_type(env, binop->lhs),
*rhs_t = get_type(env, binop->rhs);
if (lhs_t->tag == BigIntType && rhs_t->tag != BigIntType && is_numeric_type(rhs_t) && binop->lhs->tag == Int) {
lhs_t = rhs_t;
} else if (rhs_t->tag == BigIntType && lhs_t->tag != BigIntType && is_numeric_type(lhs_t) && binop->rhs->tag == Int) {
rhs_t = lhs_t;
}
#define binding_works(name, self, lhs_t, rhs_t, ret_t) \
({ binding_t *b = get_namespace_binding(env, self, name); \
(b && b->type->tag == FunctionType && ({ auto fn = Match(b->type, FunctionType); \
(type_eq(fn->ret, ret_t) \
&& (fn->args && type_eq(fn->args->type, lhs_t)) \
&& (fn->args->next && can_promote(rhs_t, fn->args->next->type))); })); })
// Check for a binop method like plus() etc:
switch (binop->op) {
case BINOP_MULT: {
if (is_numeric_type(lhs_t) && binding_works("scaled_by", binop->rhs, rhs_t, lhs_t, rhs_t))
return rhs_t;
else if (is_numeric_type(rhs_t) && binding_works("scaled_by", binop->lhs, lhs_t, rhs_t, lhs_t))
return lhs_t;
else if (type_eq(lhs_t, rhs_t) && binding_works(binop_method_names[binop->op], binop->lhs, lhs_t, rhs_t, lhs_t))
return lhs_t;
break;
}
case BINOP_PLUS: case BINOP_MINUS: case BINOP_AND: case BINOP_OR: case BINOP_XOR: {
if (type_eq(lhs_t, rhs_t) && binding_works(binop_method_names[binop->op], binop->lhs, lhs_t, rhs_t, lhs_t))
return lhs_t;
break;
}
case BINOP_DIVIDE: case BINOP_MOD: case BINOP_MOD1: {
if (is_numeric_type(rhs_t) && binding_works(binop_method_names[binop->op], binop->lhs, lhs_t, rhs_t, lhs_t))
return lhs_t;
break;
}
case BINOP_LSHIFT: case BINOP_RSHIFT: case BINOP_ULSHIFT: case BINOP_URSHIFT: {
return lhs_t;
}
case BINOP_POWER: {
if (is_numeric_type(rhs_t) && binding_works(binop_method_names[binop->op], binop->lhs, lhs_t, rhs_t, lhs_t))
return lhs_t;
break;
}
default: break;
}
#undef binding_works
switch (binop->op) {
case BINOP_AND: {
if (lhs_t->tag == BoolType && rhs_t->tag == BoolType) {
return lhs_t;
} else if ((lhs_t->tag == BoolType && rhs_t->tag == OptionalType) ||
(lhs_t->tag == OptionalType && rhs_t->tag == BoolType)) {
return Type(BoolType);
} else if (lhs_t->tag == BoolType && (rhs_t->tag == AbortType || rhs_t->tag == ReturnType)) {
return lhs_t;
} else if (rhs_t->tag == AbortType || rhs_t->tag == ReturnType) {
return lhs_t;
} else if (rhs_t->tag == OptionalType) {
if (can_promote(lhs_t, rhs_t))
return rhs_t;
} else if (lhs_t->tag == PointerType && rhs_t->tag == PointerType) {
auto lhs_ptr = Match(lhs_t, PointerType);
auto rhs_ptr = Match(rhs_t, PointerType);
if (type_eq(lhs_ptr->pointed, rhs_ptr->pointed))
return Type(PointerType, .pointed=lhs_ptr->pointed);
} else if ((is_int_type(lhs_t) && is_int_type(rhs_t))
|| (lhs_t->tag == ByteType && rhs_t->tag == ByteType)) {
return get_math_type(env, ast, lhs_t, rhs_t);
}
code_err(ast, "I can't figure out the type of this `and` expression between a %T and a %T", lhs_t, rhs_t);
}
case BINOP_OR: {
if (lhs_t->tag == BoolType && rhs_t->tag == BoolType) {
return lhs_t;
} else if ((lhs_t->tag == BoolType && rhs_t->tag == OptionalType) ||
(lhs_t->tag == OptionalType && rhs_t->tag == BoolType)) {
return Type(BoolType);
} else if (lhs_t->tag == BoolType && (rhs_t->tag == AbortType || rhs_t->tag == ReturnType)) {
return lhs_t;
} else if ((is_int_type(lhs_t) && is_int_type(rhs_t))
|| (lhs_t->tag == ByteType && rhs_t->tag == ByteType)) {
return get_math_type(env, ast, lhs_t, rhs_t);
} else if (lhs_t->tag == OptionalType) {
if (rhs_t->tag == AbortType || rhs_t->tag == ReturnType)
return Match(lhs_t, OptionalType)->type;
if (can_promote(rhs_t, lhs_t))
return rhs_t;
} else if (lhs_t->tag == PointerType) {
auto lhs_ptr = Match(lhs_t, PointerType);
if (rhs_t->tag == AbortType || rhs_t->tag == ReturnType) {
return Type(PointerType, .pointed=lhs_ptr->pointed);
} else if (rhs_t->tag == PointerType) {
auto rhs_ptr = Match(rhs_t, PointerType);
if (type_eq(rhs_ptr->pointed, lhs_ptr->pointed))
return Type(PointerType, .pointed=lhs_ptr->pointed);
}
} else if (rhs_t->tag == OptionalType) {
return type_or_type(lhs_t, rhs_t);
}
code_err(ast, "I can't figure out the type of this `or` expression between a %T and a %T", lhs_t, rhs_t);
}
case BINOP_XOR: {
if (lhs_t->tag == BoolType && rhs_t->tag == BoolType) {
return lhs_t;
} else if ((lhs_t->tag == BoolType && rhs_t->tag == OptionalType) ||
(lhs_t->tag == OptionalType && rhs_t->tag == BoolType)) {
return Type(BoolType);
} else if ((is_int_type(lhs_t) && is_int_type(rhs_t))
|| (lhs_t->tag == ByteType && rhs_t->tag == ByteType)) {
return get_math_type(env, ast, lhs_t, rhs_t);
}
code_err(ast, "I can't figure out the type of this `xor` expression between a %T and a %T", lhs_t, rhs_t);
}
case BINOP_CONCAT: {
if (!type_eq(lhs_t, rhs_t))
code_err(ast, "The type on the left side of this concatenation doesn't match the right side: %T vs. %T",
lhs_t, rhs_t);
if (lhs_t->tag == ArrayType || lhs_t->tag == TextType || lhs_t->tag == SetType)
return lhs_t;
code_err(ast, "Only array/set/text value types support concatenation, not %T", lhs_t);
}
case BINOP_EQ: case BINOP_NE: case BINOP_LT: case BINOP_LE: case BINOP_GT: case BINOP_GE: {
if (!can_promote(lhs_t, rhs_t) && !can_promote(rhs_t, lhs_t))
code_err(ast, "I can't compare these two different types: %T vs %T", lhs_t, rhs_t);
return Type(BoolType);
}
case BINOP_CMP:
return Type(IntType, .bits=TYPE_IBITS32);
case BINOP_POWER: {
type_t *result = get_math_type(env, ast, lhs_t, rhs_t);
if (result->tag == NumType)
return result;
return Type(NumType, .bits=TYPE_NBITS64);
}
case BINOP_MULT: case BINOP_DIVIDE: {
type_t *math_type = get_math_type(env, ast, value_type(lhs_t), value_type(rhs_t));
if (value_type(lhs_t)->tag == NumType || value_type(rhs_t)->tag == NumType) {
if (risks_zero_or_inf(binop->lhs) && risks_zero_or_inf(binop->rhs))
return Type(OptionalType, math_type);
else
return math_type;
}
return math_type;
}
default: {
return get_math_type(env, ast, lhs_t, rhs_t);
}
}
}
case Reduction: {
auto reduction = Match(ast, Reduction);
type_t *iter_t = get_type(env, reduction->iter);
if (reduction->op == BINOP_EQ || reduction->op == BINOP_NE || reduction->op == BINOP_LT
|| reduction->op == BINOP_LE || reduction->op == BINOP_GT || reduction->op == BINOP_GE)
return Type(OptionalType, .type=Type(BoolType));
type_t *iterated = get_iterated_type(iter_t);
if (!iterated)
code_err(reduction->iter, "I don't know how to do a reduction over %T values", iter_t);
return iterated->tag == OptionalType ? iterated : Type(OptionalType, .type=iterated);
}
case UpdateAssign:
return Type(VoidType);
case Min: case Max: {
// Unsafe! These types *should* have the same fields and this saves a lot of duplicate code:
ast_t *lhs = ast->__data.Min.lhs, *rhs = ast->__data.Min.rhs;
// Okay safe again
type_t *lhs_t = get_type(env, lhs), *rhs_t = get_type(env, rhs);
type_t *t = type_or_type(lhs_t, rhs_t);
if (!t)
code_err(ast, "The two sides of this operation are not compatible: %T vs %T", lhs_t, rhs_t);
return t;
}
case Lambda: {
auto lambda = Match(ast, Lambda);
arg_t *args = NULL;
env_t *scope = fresh_scope(env); // For now, just use closed variables in scope normally
for (arg_ast_t *arg = lambda->args; arg; arg = arg->next) {
type_t *t = get_arg_ast_type(env, arg);
args = new(arg_t, .name=arg->name, .type=t, .next=args);
set_binding(scope, arg->name, t, CORD_EMPTY);
}
REVERSE_LIST(args);
type_t *ret = get_type(scope, lambda->body);
if (ret->tag == ReturnType)
ret = Match(ret, ReturnType)->ret;
if (ret->tag == AbortType)
ret = Type(VoidType);
if (ret->tag == OptionalType && !Match(ret, OptionalType)->type)
code_err(lambda->body, "This function doesn't return a specific optional type");
if (lambda->ret_type) {
type_t *declared = parse_type_ast(env, lambda->ret_type);
if (can_promote(ret, declared))
ret = declared;
else
code_err(ast, "This function was declared to return a value of type %T, but actually returns a value of type %T",
declared, ret);
}
if (has_stack_memory(ret))
code_err(ast, "Functions can't return stack references because the reference may outlive its stack frame.");
return Type(ClosureType, Type(FunctionType, .args=args, .ret=ret));
}
case FunctionDef: case ConvertDef: case StructDef: case EnumDef: case LangDef: {
return Type(VoidType);
}
case If: {
auto if_ = Match(ast, If);
if (!if_->else_body)
return Type(VoidType);
env_t *truthy_scope = env;
env_t *falsey_scope = env;
if (if_->condition->tag == Declare) {
type_t *condition_type = get_type(env, Match(if_->condition, Declare)->value);
const char *varname = Match(Match(if_->condition, Declare)->var, Var)->name;
if (streq(varname, "_"))
code_err(if_->condition, "To use `if var := ...:`, you must choose a real variable name, not `_`");
truthy_scope = fresh_scope(env);
if (condition_type->tag == OptionalType)
set_binding(truthy_scope, varname,
Match(condition_type, OptionalType)->type, CORD_EMPTY);
else
set_binding(truthy_scope, varname, condition_type, CORD_EMPTY);
} else if (if_->condition->tag == Var) {
type_t *condition_type = get_type(env, if_->condition);
if (condition_type->tag == OptionalType) {
truthy_scope = fresh_scope(env);
const char *varname = Match(if_->condition, Var)->name;
set_binding(truthy_scope, varname,
Match(condition_type, OptionalType)->type, CORD_EMPTY);
}
}
type_t *true_t = get_type(truthy_scope, if_->body);
type_t *false_t = get_type(falsey_scope, if_->else_body);
type_t *t_either = type_or_type(true_t, false_t);
if (!t_either)
code_err(if_->else_body,
"I was expecting this block to have a %T value (based on earlier clauses), but it actually has a %T value.",
true_t, false_t);
return t_either;
}
case When: {
auto when = Match(ast, When);
type_t *subject_t = get_type(env, when->subject);
if (subject_t->tag != EnumType) {
type_t *t = NULL;
for (when_clause_t *clause = when->clauses; clause; clause = clause->next) {
t = type_or_type(t, get_type(env, clause->body));
}
if (when->else_body)
t = type_or_type(t, get_type(env, when->else_body));
else if (t->tag != OptionalType)
t = Type(OptionalType, .type=t);
return t;
}
type_t *overall_t = NULL;
tag_t * const tags = Match(subject_t, EnumType)->tags;
typedef struct match_s {
tag_t *tag;
bool handled;
struct match_s *next;
} match_t;
match_t *matches = NULL;
for (tag_t *tag = tags; tag; tag = tag->next)
matches = new(match_t, .tag=tag, .handled=false, .next=matches);
for (when_clause_t *clause = when->clauses; clause; clause = clause->next) {
const char *tag_name;
if (clause->pattern->tag == Var)
tag_name = Match(clause->pattern, Var)->name;
else if (clause->pattern->tag == FunctionCall && Match(clause->pattern, FunctionCall)->fn->tag == Var)
tag_name = Match(Match(clause->pattern, FunctionCall)->fn, Var)->name;
else
code_err(clause->pattern, "This is not a valid pattern for a %T enum", subject_t);
CORD valid_tags = CORD_EMPTY;
for (match_t *m = matches; m; m = m->next) {
if (streq(m->tag->name, tag_name)) {
if (m->handled)
code_err(clause->pattern, "This tag was already handled earlier");
m->handled = true;
goto found_matching_tag;
}
if (valid_tags) valid_tags = CORD_cat(valid_tags, ", ");
valid_tags = CORD_cat(valid_tags, m->tag->name);
}
code_err(clause->pattern, "There is no tag '%s' for the type %T (valid tags: %s)",
tag_name, subject_t, CORD_to_char_star(valid_tags));
found_matching_tag:;
}
for (when_clause_t *clause = when->clauses; clause; clause = clause->next) {
env_t *clause_scope = when_clause_scope(env, subject_t, clause);
type_t *clause_type = get_type(clause_scope, clause->body);
type_t *merged = type_or_type(overall_t, clause_type);
if (!merged)
code_err(clause->body, "The type of this branch is %T, which conflicts with the earlier branch type of %T",
clause_type, overall_t);
overall_t = merged;
}
if (when->else_body) {
bool any_unhandled = false;
for (match_t *m = matches; m; m = m->next) {
if (!m->handled) {
any_unhandled = true;
break;
}
}
// HACK: `while when ...` is handled by the parser adding an implicit
// `else: stop`, which has an empty source code span.
if (!any_unhandled && when->else_body->end > when->else_body->start)
code_err(when->else_body, "This 'else' block will never run because every tag is handled");
type_t *else_t = get_type(env, when->else_body);
type_t *merged = type_or_type(overall_t, else_t);
if (!merged)
code_err(when->else_body,
"I was expecting this block to have a %T value (based on earlier clauses), but it actually has a %T value.",
overall_t, else_t);
return merged;
} else {
CORD unhandled = CORD_EMPTY;
for (match_t *m = matches; m; m = m->next) {
if (!m->handled)
unhandled = unhandled ? CORD_all(unhandled, ", ", m->tag->name) : m->tag->name;
}
if (unhandled)
code_err(ast, "This 'when' statement doesn't handle the tags: %s", CORD_to_const_char_star(unhandled));
return overall_t;
}
}
case While: case Repeat: case For: return Type(VoidType);
case InlineCCode: {
auto inline_code = Match(ast, InlineCCode);
if (inline_code->type)
return inline_code->type;
type_ast_t *type_ast = inline_code->type_ast;
return type_ast ? parse_type_ast(env, type_ast) : Type(VoidType);
}
case Moment: return Type(MomentType);
case Unknown: code_err(ast, "I can't figure out the type of: %W", ast);
case Deserialize: return parse_type_ast(env, Match(ast, Deserialize)->type);
}
#pragma GCC diagnostic pop
code_err(ast, "I can't figure out the type of: %W", ast);
}
PUREFUNC bool is_discardable(env_t *env, ast_t *ast)
{
switch (ast->tag) {
case UpdateAssign: case Assign: case Declare: case FunctionDef: case ConvertDef: case StructDef: case EnumDef:
case LangDef: case Use:
return true;
default: break;
}
type_t *t = get_type(env, ast);
return (t->tag == VoidType || t->tag == AbortType || t->tag == ReturnType);
}
type_t *get_arg_ast_type(env_t *env, arg_ast_t *arg)
{
assert(arg->type || arg->value);
if (arg->type)
return parse_type_ast(env, arg->type);
return get_type(env, arg->value);
}
type_t *get_arg_type(env_t *env, arg_t *arg)
{
assert(arg->type || arg->default_val);
if (arg->type) return arg->type;
return get_type(env, arg->default_val);
}
Table_t *get_arg_bindings(env_t *env, arg_t *spec_args, arg_ast_t *call_args, bool promotion_allowed)
{
Table_t used_args = {};
// Populate keyword args:
for (arg_ast_t *call_arg = call_args; call_arg; call_arg = call_arg->next) {
if (!call_arg->name) continue;
type_t *call_type = get_arg_ast_type(env, call_arg);
for (arg_t *spec_arg = spec_args; spec_arg; spec_arg = spec_arg->next) {
if (!streq(call_arg->name, spec_arg->name)) continue;
type_t *spec_type = get_arg_type(env, spec_arg);
if (!(type_eq(call_type, spec_type) || (promotion_allowed && can_promote(call_type, spec_type))
|| (promotion_allowed && call_arg->value->tag == Int && is_numeric_type(spec_type))
|| (promotion_allowed && call_arg->value->tag == Num && spec_type->tag == NumType)))
return NULL;
Table$str_set(&used_args, call_arg->name, call_arg);
goto next_call_arg;
}
return NULL;
next_call_arg:;
}
arg_ast_t *unused_args = call_args;
for (arg_t *spec_arg = spec_args; spec_arg; spec_arg = spec_arg->next) {
arg_ast_t *keyworded = Table$str_get(used_args, spec_arg->name);
if (keyworded) continue;
type_t *spec_type = get_arg_type(env, spec_arg);
for (; unused_args; unused_args = unused_args->next) {
if (unused_args->name) continue; // Already handled the keyword args
type_t *call_type = get_arg_ast_type(env, unused_args);
if (!(type_eq(call_type, spec_type) || (promotion_allowed && can_promote(call_type, spec_type))
|| (promotion_allowed && unused_args->value->tag == Int && is_numeric_type(spec_type))
|| (promotion_allowed && unused_args->value->tag == Num && spec_type->tag == NumType)))
return NULL; // Positional arg trying to fill in
Table$str_set(&used_args, spec_arg->name, unused_args);
unused_args = unused_args->next;
goto found_it;
}
if (spec_arg->default_val)
goto found_it;
return NULL;
found_it: continue;
}
while (unused_args && unused_args->name)
unused_args = unused_args->next;
if (unused_args != NULL)
return NULL;
Table_t *ret = new(Table_t);
*ret = used_args;
return ret;
}
bool is_valid_call(env_t *env, arg_t *spec_args, arg_ast_t *call_args, bool promotion_allowed)
{
Table_t *arg_bindings = get_arg_bindings(env, spec_args, call_args, promotion_allowed);
return (arg_bindings != NULL);
}
PUREFUNC bool can_be_mutated(env_t *env, ast_t *ast)
{
switch (ast->tag) {
case Var: return true;
case InlineCCode: return true;
case FieldAccess: {
auto access = Match(ast, FieldAccess);
type_t *fielded_type = get_type(env, access->fielded);
if (fielded_type->tag == PointerType) {
return true;
} else if (fielded_type->tag == StructType) {
return can_be_mutated(env, access->fielded);
} else {
return false;
}
}
case Index: {
auto index = Match(ast, Index);
type_t *indexed_type = get_type(env, index->indexed);
return (indexed_type->tag == PointerType);
}
default: return false;
}
}
type_t *parse_type_string(env_t *env, const char *str)
{
type_ast_t *ast = parse_type_str(str);
return ast ? parse_type_ast(env, ast) : NULL;
}
PUREFUNC bool is_constant(env_t *env, ast_t *ast)
{
switch (ast->tag) {
case Bool: case Num: case None: return true;
case Int: {
auto info = Match(ast, Int);
Int_t int_val = Int$parse(Text$from_str(info->str));
if (int_val.small == 0) return false; // Failed to parse
return (Int$compare_value(int_val, I(BIGGEST_SMALL_INT)) <= 0);
}
case TextJoin: {
auto text = Match(ast, TextJoin);
if (!text->children) return true; // Empty string, OK
if (text->children->next) return false; // Concatenation, not constant
return is_constant(env, text->children->ast);
}
case TextLiteral: {
CORD literal = Match(ast, TextLiteral)->cord;
CORD_pos i;
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wsign-conversion"
CORD_FOR(i, literal) {
if (!isascii(CORD_pos_fetch(i)))
return false; // Non-ASCII requires grapheme logic, not constant
}
#pragma GCC diagnostic pop
return true; // Literal ASCII string, OK
}
case Not: return is_constant(env, Match(ast, Not)->value);
case Negative: return is_constant(env, Match(ast, Negative)->value);
case BinaryOp: {
auto binop = Match(ast, BinaryOp);
switch (binop->op) {
case BINOP_UNKNOWN: case BINOP_POWER: case BINOP_CONCAT: case BINOP_MIN: case BINOP_MAX: case BINOP_CMP:
return false;
default:
return is_constant(env, binop->lhs) && is_constant(env, binop->rhs);
}
}
case Use: return true;
case FunctionCall: return false;
case InlineCCode: return true;
default: return false;
}
}
// vim: ts=4 sw=0 et cino=L2,l1,(0,W4,m1,\:0