tomo/types.c

731 lines
26 KiB
C

// Logic for handling type_t types
#include <gc/cord.h>
#include <limits.h>
#include <math.h>
#include <signal.h>
#include <stdint.h>
#include <sys/param.h>
#include "cordhelpers.h"
#include "environment.h"
#include "stdlib/integers.h"
#include "stdlib/tables.h"
#include "stdlib/util.h"
#include "types.h"
CORD type_to_cord(type_t *t) {
if (!t)
return "(Unknown type)";
switch (t->tag) {
case UnknownType: return "???";
case AbortType: return "Abort";
case ReturnType: {
type_t *ret = Match(t, ReturnType)->ret;
return CORD_all("Return(", ret ? type_to_cord(ret) : "Void", ")");
}
case VoidType: return "Void";
case MemoryType: return "Memory";
case BoolType: return "Bool";
case ByteType: return "Byte";
case CStringType: return "CString";
case MomentType: return "Moment";
case TextType: return Match(t, TextType)->lang ? Match(t, TextType)->lang : "Text";
case BigIntType: return "Int";
case IntType: return CORD_asprintf("Int%d", Match(t, IntType)->bits);
case NumType: return Match(t, NumType)->bits == TYPE_NBITS32 ? "Num32" : "Num";
case ArrayType: {
auto array = Match(t, ArrayType);
return CORD_asprintf("[%r]", type_to_cord(array->item_type));
}
case TableType: {
auto table = Match(t, TableType);
if (table->default_value)
return CORD_asprintf("{%r=%.*s}", type_to_cord(table->key_type),
table->default_value->end - table->default_value->start, table->default_value->start);
else
return CORD_asprintf("{%r:%r}", type_to_cord(table->key_type), type_to_cord(table->value_type));
}
case SetType: {
auto set = Match(t, SetType);
return CORD_asprintf("{%r}", type_to_cord(set->item_type));
}
case ClosureType: {
return type_to_cord(Match(t, ClosureType)->fn);
}
case FunctionType: {
CORD c = "func(";
auto fn = Match(t, FunctionType);
for (arg_t *arg = fn->args; arg; arg = arg->next) {
c = CORD_cat(c, type_to_cord(arg->type));
if (arg->next) c = CORD_cat(c, ",");
}
if (fn->ret && fn->ret->tag != VoidType)
c = CORD_all(c, fn->args ? " -> " : "-> ", type_to_cord(fn->ret));
c = CORD_all(c, ")");
return c;
}
case StructType: {
auto struct_ = Match(t, StructType);
return struct_->name;
}
case PointerType: {
auto ptr = Match(t, PointerType);
CORD sigil = ptr->is_stack ? "&" : "@";
return CORD_all(sigil, type_to_cord(ptr->pointed));
}
case EnumType: {
auto tagged = Match(t, EnumType);
return tagged->name;
}
case OptionalType: {
type_t *opt = Match(t, OptionalType)->type;
if (opt)
return CORD_all(type_to_cord(opt), "?");
else
return "(Unknown optional type)";
}
case MutexedType: {
type_t *opt = Match(t, MutexedType)->type;
if (opt)
return CORD_all("mutexed ", type_to_cord(opt));
else
return "(Unknown optional type)";
}
case TypeInfoType: {
return CORD_all("Type$info(", Match(t, TypeInfoType)->name, ")");
}
case ModuleType: {
return CORD_all("Module(", Match(t, ModuleType)->name, ")");
}
default: {
raise(SIGABRT);
return CORD_asprintf("Unknown type: %d", t->tag);
}
}
}
PUREFUNC const char *get_type_name(type_t *t)
{
switch (t->tag) {
case TextType: return Match(t, TextType)->lang;
case StructType: return Match(t, StructType)->name;
case EnumType: return Match(t, EnumType)->name;
default: return NULL;
}
}
int printf_pointer_size(const struct printf_info *info, size_t n, int argtypes[n], int sizes[n])
{
if (n < 1) return -1;
(void)info;
argtypes[0] = PA_POINTER;
sizes[0] = sizeof(void*);
return 1;
}
int printf_type(FILE *stream, const struct printf_info *info, const void *const args[])
{
(void)info;
type_t *t = *(type_t**)args[0];
if (!t) return fputs("(null)", stream);
return CORD_put(type_to_cord(t), stream);
}
bool type_eq(type_t *a, type_t *b)
{
if (a == b) return true;
if (a->tag != b->tag) return false;
return (CORD_cmp(type_to_cord(a), type_to_cord(b)) == 0);
}
bool type_is_a(type_t *t, type_t *req)
{
if (type_eq(t, req)) return true;
if (req->tag == OptionalType && Match(req, OptionalType)->type)
return type_is_a(t, Match(req, OptionalType)->type);
if (t->tag == PointerType && req->tag == PointerType) {
auto t_ptr = Match(t, PointerType);
auto req_ptr = Match(req, PointerType);
if (type_eq(t_ptr->pointed, req_ptr->pointed))
return (!t_ptr->is_stack && req_ptr->is_stack) || (!t_ptr->is_stack);
}
return false;
}
type_t *non_optional(type_t *t)
{
return t->tag == OptionalType ? Match(t, OptionalType)->type : t;
}
PUREFUNC type_t *value_type(type_t *t)
{
while (t->tag == PointerType)
t = Match(t, PointerType)->pointed;
return t;
}
type_t *type_or_type(type_t *a, type_t *b)
{
if (!a) return b;
if (!b) return a;
if (a->tag == OptionalType && !Match(a, OptionalType)->type)
return b->tag == OptionalType ? b : Type(OptionalType, b);
if (b->tag == OptionalType && !Match(b, OptionalType)->type)
return a->tag == OptionalType ? a : Type(OptionalType, a);
if (a->tag == ReturnType && b->tag == ReturnType)
return Type(ReturnType, .ret=type_or_type(Match(a, ReturnType)->ret, Match(b, ReturnType)->ret));
if (type_is_a(b, a)) return a;
if (type_is_a(a, b)) return b;
if (a->tag == AbortType || a->tag == ReturnType) return non_optional(b);
if (b->tag == AbortType || b->tag == ReturnType) return non_optional(a);
if ((a->tag == IntType || a->tag == NumType) && (b->tag == IntType || b->tag == NumType)) {
switch (compare_precision(a, b)) {
case NUM_PRECISION_EQUAL: case NUM_PRECISION_MORE: return a;
case NUM_PRECISION_LESS: return b;
default: return NULL;
}
return NULL;
}
return NULL;
}
static PUREFUNC INLINE double type_min_magnitude(type_t *t)
{
switch (t->tag) {
case BoolType: return (double)false;
case ByteType: return 0;
case BigIntType: return -1./0.;
case IntType: {
switch (Match(t, IntType)->bits) {
case TYPE_IBITS8: return (double)INT8_MIN;
case TYPE_IBITS16: return (double)INT16_MIN;
case TYPE_IBITS32: return (double)INT32_MIN;
case TYPE_IBITS64: return (double)INT64_MIN;
default: errx(1, "Invalid integer bit size");
}
}
case NumType: return -1./0.;
default: return NAN;
}
}
static PUREFUNC INLINE double type_max_magnitude(type_t *t)
{
switch (t->tag) {
case BoolType: return (double)true;
case ByteType: return (double)UINT8_MAX;
case BigIntType: return 1./0.;
case IntType: {
switch (Match(t, IntType)->bits) {
case TYPE_IBITS8: return (double)INT8_MAX;
case TYPE_IBITS16: return (double)INT16_MAX;
case TYPE_IBITS32: return (double)INT32_MAX;
case TYPE_IBITS64: return (double)INT64_MAX;
default: errx(1, "Invalid integer bit size");
}
}
case NumType: return 1./0.;
default: return NAN;
}
}
PUREFUNC precision_cmp_e compare_precision(type_t *a, type_t *b)
{
if (a->tag == OptionalType && Match(a, OptionalType)->type->tag == NumType)
a = Match(a, OptionalType)->type;
if (b->tag == OptionalType && Match(b, OptionalType)->type->tag == NumType)
b = Match(b, OptionalType)->type;
if (is_int_type(a) && b->tag == NumType)
return NUM_PRECISION_LESS;
else if (a->tag == NumType && is_int_type(b))
return NUM_PRECISION_MORE;
double a_min = type_min_magnitude(a),
b_min = type_min_magnitude(b),
a_max = type_max_magnitude(a),
b_max = type_max_magnitude(b);
if (isnan(a_min) || isnan(b_min) || isnan(a_max) || isnan(b_max))
return NUM_PRECISION_INCOMPARABLE;
else if (a_min == b_min && a_max == b_max) return NUM_PRECISION_EQUAL;
else if (a_min <= b_min && b_max <= a_max) return NUM_PRECISION_MORE;
else if (b_min <= a_min && a_max <= b_max) return NUM_PRECISION_LESS;
else return NUM_PRECISION_INCOMPARABLE;
}
PUREFUNC bool has_heap_memory(type_t *t)
{
switch (t->tag) {
case ArrayType: return true;
case TableType: return true;
case SetType: return true;
case PointerType: return true;
case OptionalType: return has_heap_memory(Match(t, OptionalType)->type);
case MutexedType: return true;
case BigIntType: return true;
case StructType: {
for (arg_t *field = Match(t, StructType)->fields; field; field = field->next) {
if (has_heap_memory(field->type))
return true;
}
return false;
}
case EnumType: {
for (tag_t *tag = Match(t, EnumType)->tags; tag; tag = tag->next) {
if (tag->type && has_heap_memory(tag->type))
return true;
}
return false;
}
default: return false;
}
}
PUREFUNC bool has_stack_memory(type_t *t)
{
switch (t->tag) {
case PointerType: return Match(t, PointerType)->is_stack;
case OptionalType: return has_stack_memory(Match(t, OptionalType)->type);
case MutexedType: return has_stack_memory(Match(t, MutexedType)->type);
default: return false;
}
}
PUREFUNC const char *enum_single_value_tag(type_t *enum_type, type_t *t)
{
const char *found = NULL;
for (tag_t *tag = Match(enum_type, EnumType)->tags; tag; tag = tag->next) {
if (tag->type->tag != StructType) continue;
auto s = Match(tag->type, StructType);
if (!s->fields || s->fields->next || !s->fields->type)
continue;
if (can_promote(t, s->fields->type)) {
if (found) // Ambiguous case, multiple matches
return NULL;
found = tag->name;
// Continue searching to check for ambiguous cases
}
}
return found;
}
PUREFUNC bool can_promote(type_t *actual, type_t *needed)
{
if (!actual || !needed)
return false;
// No promotion necessary:
if (type_eq(actual, needed))
return true;
if (actual->tag == NumType && needed->tag == IntType)
return false;
if (actual->tag == IntType && (needed->tag == NumType || needed->tag == BigIntType))
return true;
if (actual->tag == BigIntType && needed->tag == NumType)
return true;
if (actual->tag == IntType && needed->tag == IntType) {
auto cmp = compare_precision(actual, needed);
return cmp == NUM_PRECISION_EQUAL || cmp == NUM_PRECISION_LESS;
}
if (needed->tag == EnumType)
return (enum_single_value_tag(needed, actual) != NULL);
// Lang to Text:
if (actual->tag == TextType && needed->tag == TextType && streq(Match(needed, TextType)->lang, "Text"))
return true;
// Text to C String
if (actual->tag == TextType && !Match(actual, TextType)->lang && needed->tag == CStringType)
return true;
// Automatic dereferencing:
if (actual->tag == PointerType && can_promote(Match(actual, PointerType)->pointed, needed))
return true;
if (actual->tag == OptionalType) {
if (needed->tag == BoolType)
return true;
// Ambiguous `none` to concrete optional
if (Match(actual, OptionalType)->type == NULL)
return (needed->tag == OptionalType);
// Optional num -> num
if (needed->tag == NumType && actual->tag == OptionalType && Match(actual, OptionalType)->type->tag == NumType)
return can_promote(Match(actual, OptionalType)->type, needed);
}
// Optional promotion:
if (needed->tag == OptionalType && Match(needed, OptionalType)->type != NULL && can_promote(actual, Match(needed, OptionalType)->type))
return true;
if (needed->tag == PointerType && actual->tag == PointerType) {
auto needed_ptr = Match(needed, PointerType);
auto actual_ptr = Match(actual, PointerType);
if (actual_ptr->is_stack && !needed_ptr->is_stack)
// Can't use &x for a function that wants a @Foo or ?Foo
return false;
if (needed_ptr->pointed->tag == TableType && actual_ptr->pointed->tag == TableType)
return can_promote(actual_ptr->pointed, needed_ptr->pointed);
else if (needed_ptr->pointed->tag != MemoryType && !type_eq(needed_ptr->pointed, actual_ptr->pointed))
// Can't use @Foo for a function that wants @Baz
// But you *can* use @Foo for a function that wants @Memory
return false;
else
return true;
}
// Cross-promotion between tables with default values and without
if (needed->tag == TableType && actual->tag == TableType) {
auto actual_table = Match(actual, TableType);
auto needed_table = Match(needed, TableType);
if (type_eq(needed_table->key_type, actual_table->key_type)
&& type_eq(needed_table->value_type, actual_table->value_type))
return true;
}
if (needed->tag == ClosureType && actual->tag == FunctionType)
return can_promote(actual, Match(needed, ClosureType)->fn);
if (needed->tag == ClosureType && actual->tag == ClosureType)
return can_promote(Match(actual, ClosureType)->fn, Match(needed, ClosureType)->fn);
if (actual->tag == FunctionType && needed->tag == FunctionType) {
for (arg_t *actual_arg = Match(actual, FunctionType)->args, *needed_arg = Match(needed, FunctionType)->args;
actual_arg || needed_arg; actual_arg = actual_arg->next, needed_arg = needed_arg->next) {
if (!actual_arg || !needed_arg) return false;
if (type_eq(actual_arg->type, needed_arg->type)) continue;
if (actual_arg->type->tag == PointerType && needed_arg->type->tag == PointerType
&& can_promote(actual_arg->type, needed_arg->type))
continue;
return false;
}
type_t *actual_ret = Match(actual, FunctionType)->ret;
if (!actual_ret) actual_ret = Type(VoidType);
type_t *needed_ret = Match(needed, FunctionType)->ret;
if (!needed_ret) needed_ret = Type(VoidType);
return (
(type_eq(actual_ret, needed_ret))
|| (actual_ret->tag == PointerType && needed_ret->tag == PointerType
&& can_promote(actual_ret, needed_ret)));
}
// Set -> Array promotion
if (needed->tag == ArrayType && actual->tag == SetType
&& type_eq(Match(needed, ArrayType)->item_type, Match(actual, SetType)->item_type))
return true;
return false;
}
PUREFUNC bool is_int_type(type_t *t)
{
return t->tag == IntType || t->tag == BigIntType;
}
PUREFUNC bool is_numeric_type(type_t *t)
{
return t->tag == IntType || t->tag == BigIntType || t->tag == NumType || t->tag == ByteType;
}
PUREFUNC bool is_packed_data(type_t *t)
{
if (t->tag == IntType || t->tag == NumType || t->tag == ByteType || t->tag == PointerType || t->tag == BoolType || t->tag == FunctionType) {
return true;
} else if (t->tag == StructType) {
for (arg_t *field = Match(t, StructType)->fields; field; field = field->next) {
if (!is_packed_data(field->type))
return false;
}
return true;
} else if (t->tag == EnumType) {
for (tag_t *tag = Match(t, EnumType)->tags; tag; tag = tag->next) {
if (!is_packed_data(tag->type))
return false;
}
return true;
} else {
return false;
}
}
PUREFUNC size_t unpadded_struct_size(type_t *t)
{
arg_t *fields = Match(t, StructType)->fields;
size_t size = 0;
size_t bit_offset = 0;
for (arg_t *field = fields; field; field = field->next) {
type_t *field_type = field->type;
if (field_type->tag == BoolType) {
bit_offset += 1;
if (bit_offset >= 8) {
size += 1;
bit_offset = 0;
}
} else {
if (bit_offset > 0) {
size += 1;
bit_offset = 0;
}
size_t align = type_align(field_type);
if (align > 1 && size % align > 0)
size += align - (size % align); // Padding
size += type_size(field_type);
}
}
if (bit_offset > 0) {
size += 1;
bit_offset = 0;
}
return size;
}
PUREFUNC size_t type_size(type_t *t)
{
if (t == THREAD_TYPE) return sizeof(pthread_t*);
if (t == PATH_TYPE) return sizeof(Path_t);
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wswitch-default"
switch (t->tag) {
case UnknownType: case AbortType: case ReturnType: case VoidType: return 0;
case MemoryType: errx(1, "Memory has undefined type size");
case BoolType: return sizeof(bool);
case ByteType: return sizeof(uint8_t);
case CStringType: return sizeof(char*);
case MomentType: return sizeof(Moment_t);
case BigIntType: return sizeof(Int_t);
case IntType: {
switch (Match(t, IntType)->bits) {
case TYPE_IBITS64: return sizeof(int64_t);
case TYPE_IBITS32: return sizeof(int32_t);
case TYPE_IBITS16: return sizeof(int16_t);
case TYPE_IBITS8: return sizeof(int8_t);
default: errx(1, "Invalid integer bit size");
}
}
case NumType: return Match(t, NumType)->bits == TYPE_NBITS64 ? sizeof(double) : sizeof(float);
case TextType: return sizeof(Text_t);
case ArrayType: return sizeof(Array_t);
case SetType: return sizeof(Table_t);
case TableType: return sizeof(Table_t);
case FunctionType: return sizeof(void*);
case ClosureType: return sizeof(struct {void *fn, *userdata;});
case PointerType: return sizeof(void*);
case MutexedType: return sizeof(MutexedData_t);
case OptionalType: {
type_t *nonnull = Match(t, OptionalType)->type;
switch (nonnull->tag) {
case IntType:
switch (Match(nonnull, IntType)->bits) {
case TYPE_IBITS64: return sizeof(OptionalInt64_t);
case TYPE_IBITS32: return sizeof(OptionalInt32_t);
case TYPE_IBITS16: return sizeof(OptionalInt16_t);
case TYPE_IBITS8: return sizeof(OptionalInt8_t);
default: errx(1, "Invalid integer bit size");
}
case StructType: {
size_t size = unpadded_struct_size(nonnull);
size += sizeof(bool); // is_null flag
size_t align = type_align(nonnull);
if (align > 0 && (size % align) > 0)
size = (size + align) - (size % align);
return size;
}
default: return type_size(nonnull);
}
}
case StructType: {
size_t size = unpadded_struct_size(t);
size_t align = type_align(t);
if (size > 0 && align > 0 && (size % align) > 0)
size = (size + align) - (size % align);
return size;
}
case EnumType: {
size_t max_align = 0;
size_t max_size = 0;
for (tag_t *tag = Match(t, EnumType)->tags; tag; tag = tag->next) {
size_t align = type_align(tag->type);
if (align > max_align) max_align = align;
size_t size = type_size(tag->type);
if (size > max_size) max_size = size;
}
size_t size = sizeof(UnknownType); // generic enum
if (max_align > 1 && size % max_align > 0) // Padding before first union field
size += max_align - (size % max_align);
size += max_size;
size_t align = MAX(__alignof__(UnknownType), max_align);
if (size % align > 0) // Padding after union
size += align - (size % align);
return size;
}
case TypeInfoType: return sizeof(TypeInfo_t);
case ModuleType: return 0;
}
#pragma GCC diagnostic pop
errx(1, "This should not be reachable");
}
PUREFUNC size_t type_align(type_t *t)
{
if (t == THREAD_TYPE) return __alignof__(pthread_t*);
if (t == PATH_TYPE) return __alignof__(Path_t);
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wswitch-default"
switch (t->tag) {
case UnknownType: case AbortType: case ReturnType: case VoidType: return 0;
case MemoryType: errx(1, "Memory has undefined type alignment");
case BoolType: return __alignof__(bool);
case ByteType: return __alignof__(uint8_t);
case CStringType: return __alignof__(char*);
case MomentType: return __alignof__(Moment_t);
case BigIntType: return __alignof__(Int_t);
case IntType: {
switch (Match(t, IntType)->bits) {
case TYPE_IBITS64: return __alignof__(int64_t);
case TYPE_IBITS32: return __alignof__(int32_t);
case TYPE_IBITS16: return __alignof__(int16_t);
case TYPE_IBITS8: return __alignof__(int8_t);
default: return 0;
}
}
case NumType: return Match(t, NumType)->bits == TYPE_NBITS64 ? __alignof__(double) : __alignof__(float);
case TextType: return __alignof__(Text_t);
case SetType: return __alignof__(Table_t);
case ArrayType: return __alignof__(Array_t);
case TableType: return __alignof__(Table_t);
case FunctionType: return __alignof__(void*);
case ClosureType: return __alignof__(struct {void *fn, *userdata;});
case PointerType: return __alignof__(void*);
case MutexedType: return __alignof__(MutexedData_t);
case OptionalType: {
type_t *nonnull = Match(t, OptionalType)->type;
switch (nonnull->tag) {
case IntType:
switch (Match(nonnull, IntType)->bits) {
case TYPE_IBITS64: return __alignof__(OptionalInt64_t);
case TYPE_IBITS32: return __alignof__(OptionalInt32_t);
case TYPE_IBITS16: return __alignof__(OptionalInt16_t);
case TYPE_IBITS8: return __alignof__(OptionalInt8_t);
default: errx(1, "Invalid integer bit size");
}
case StructType: return MAX(1, type_align(nonnull));
default: return type_align(nonnull);
}
}
case StructType: {
arg_t *fields = Match(t, StructType)->fields;
size_t align = t->tag == StructType ? 0 : sizeof(void*);
for (arg_t *field = fields; field; field = field->next) {
size_t field_align = type_align(field->type);
if (field_align > align) align = field_align;
}
return align;
}
case EnumType: {
size_t align = __alignof__(UnknownType);
for (tag_t *tag = Match(t, EnumType)->tags; tag; tag = tag->next) {
size_t tag_align = type_align(tag->type);
if (tag_align > align) align = tag_align;
}
return align;
}
case TypeInfoType: return __alignof__(TypeInfo_t);
case ModuleType: return 0;
}
#pragma GCC diagnostic pop
errx(1, "This should not be reachable");
}
type_t *get_field_type(type_t *t, const char *field_name)
{
t = value_type(t);
switch (t->tag) {
case PointerType:
return get_field_type(Match(t, PointerType)->pointed, field_name);
case TextType: {
if (Match(t, TextType)->lang && streq(field_name, "text"))
return TEXT_TYPE;
else if (streq(field_name, "length")) return INT_TYPE;
return NULL;
}
case StructType: {
auto struct_t = Match(t, StructType);
for (arg_t *field = struct_t->fields; field; field = field->next) {
if (streq(field->name, field_name))
return field->type;
}
return NULL;
}
case EnumType: {
auto e = Match(t, EnumType);
for (tag_t *tag = e->tags; tag; tag = tag->next) {
if (streq(field_name, tag->name))
return Type(BoolType);
}
return NULL;
}
case SetType: {
if (streq(field_name, "length"))
return INT_TYPE;
else if (streq(field_name, "items"))
return Type(ArrayType, .item_type=Match(t, SetType)->item_type);
return NULL;
}
case TableType: {
if (streq(field_name, "length"))
return INT_TYPE;
else if (streq(field_name, "keys"))
return Type(ArrayType, Match(t, TableType)->key_type);
else if (streq(field_name, "values"))
return Type(ArrayType, Match(t, TableType)->value_type);
else if (streq(field_name, "fallback"))
return Type(OptionalType, .type=t);
return NULL;
}
case ArrayType: {
if (streq(field_name, "length")) return INT_TYPE;
return NULL;
}
case MomentType: {
if (streq(field_name, "seconds")) return Type(IntType, .bits=TYPE_IBITS64);
else if (streq(field_name, "microseconds")) return Type(IntType, .bits=TYPE_IBITS64);
return NULL;
}
default: return NULL;
}
}
PUREFUNC type_t *get_iterated_type(type_t *t)
{
type_t *iter_value_t = value_type(t);
switch (iter_value_t->tag) {
case BigIntType: case IntType: return iter_value_t; break;
case ArrayType: return Match(iter_value_t, ArrayType)->item_type; break;
case SetType: return Match(iter_value_t, SetType)->item_type; break;
case TableType: return NULL;
case FunctionType: case ClosureType: {
// Iterator function
auto fn = iter_value_t->tag == ClosureType ?
Match(Match(iter_value_t, ClosureType)->fn, FunctionType) : Match(iter_value_t, FunctionType);
if (fn->args || fn->ret->tag != OptionalType)
return NULL;
return Match(fn->ret, OptionalType)->type;
}
default: return NULL;
}
}
// vim: ts=4 sw=0 et cino=L2,l1,(0,W4,m1,\:0