Tweaks and fixes

This commit is contained in:
Bruce Hill 2025-03-06 00:51:15 -05:00
parent 48db8f070f
commit 9e67dcebd6
2 changed files with 32 additions and 61 deletions

View File

@ -1,5 +1,7 @@
import numpy as np import numpy as np
import math
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
from wavelength import wavelength_to_ansi
def gaussian_sensitivity(peak1, peak2, sigma, wavelengths, depth=2): def gaussian_sensitivity(peak1, peak2, sigma, wavelengths, depth=2):
if depth <= 0: return 0 if depth <= 0: return 0
@ -19,12 +21,13 @@ sigma_starling = 35
human_peaks = {(437, 315): 'blue', (533,345): 'green', (564,355): 'red'} human_peaks = {(437, 315): 'blue', (533,345): 'green', (564,355): 'red'}
# Starling cone sensitivities (including UV) # Starling cone sensitivities (including UV)
starling_peaks = {(362,250): 'violet', (449,320): 'blue', (504,340): 'green', (563,360): 'red'} starling_peaks = {(362,250): 'violet', (449,320): 'cyan', (504,340): 'green', (563,360): 'red'}
ANSI_COLORS = { ANSI_COLORS = {
"blue": "\033[34m", "blue": "\033[34m",
"red": "\033[31m", "red": "\033[31m",
"green": "\033[32m", "green": "\033[32m",
"cyan": "\033[36m",
"violet": "\033[38;5;177m", "violet": "\033[38;5;177m",
"purple": "\033[38;5;177m", "purple": "\033[38;5;177m",
} }
@ -53,27 +56,40 @@ plt.tight_layout()
plt.savefig("retinal_cones.png") plt.savefig("retinal_cones.png")
''' '''
def bar(progress : float, width : int):
progress = min(1, max(0, progress))
whole_width = math.floor(progress * width)
remainder_width = (progress * width) % 1
part_width = math.floor(remainder_width * 8)
part_char = [" ", "", "", "", "", "", "", ""][part_width]
if (width - whole_width - 1) < 0:
part_char = ""
line = "\033[48;5;237m" + "" * whole_width + part_char + " " * (width - whole_width - 1) + "\033[40m"
return line
def human_activations(color_name, wavelengths, verbose=False): def human_activations(color_name, wavelengths, verbose=False):
raw_activations = {} raw_activations = {}
for (peak1,peak2), color in human_peaks.items(): for (peak1,peak2), color in human_peaks.items():
raw_activations[color] = gaussian_sensitivity(peak1, peak2, sigma_human, wavelengths) raw_activations[color] = gaussian_sensitivity(peak1, peak2, sigma_human, wavelengths)
if verbose: if verbose:
print(f"\033[1mHumans\033[m see {ANSI_COLORS[color_name]}{color_name}\033[m as:") print(f"\033[1mHumans\033[m see {color_name}\033[m as:")
activations = [] activations = []
for color,levels in raw_activations.items(): for color,levels in raw_activations.items():
k = sum(levels)/sum(sum(l) for l in raw_activations.values()) k = sum(levels)/sum(sum(l) for l in raw_activations.values())
activations.append(k) activations.append(k)
if verbose: if verbose:
print(f"{ANSI_COLORS[color]}{color}: \033[10G {k:%}\033[m") print(f"{ANSI_COLORS[color]}{color}: \033[10G {k:%} \033[30G{bar(k, 30)}\033[m")
if verbose: if verbose:
print("") print("")
vec = np.array(activations) vec = np.array(activations)
return vec / np.linalg.norm(vec) return vec / np.linalg.norm(vec)
human_activations("violet", np.array([380]), verbose=True) colored_purple = "".join(f"\033[38;2;255;78;0m{c}" if i % 2 == 0 else f"\033[38;2;0;146;255m{c}" for i,c in enumerate("purple")) + "\033[m"
human_activations("purple", np.array([623, 462]), verbose=True) colored_purple += " (\033[38;2;255;78;0m630nm\033[m & \033[38;2;0;146;255m465nm\033[m)"
human_activations("\033[38;5;177mviolet (384nm)\033[m", np.array([384]), verbose=True)
human_activations(colored_purple, np.array([630, 465]), verbose=True)
print("\nThey look the same to us!") print("\nThey look the same to us!")
section_break() section_break()
@ -84,21 +100,21 @@ def starling_activations(color_name, wavelengths, verbose=False):
raw_activations[color] = gaussian_sensitivity(peak1, peak2, sigma_starling, wavelengths) raw_activations[color] = gaussian_sensitivity(peak1, peak2, sigma_starling, wavelengths)
if verbose: if verbose:
print(f"\033[1mStarlings\033[m see {ANSI_COLORS[color_name]}{color_name}\033[m as:") print(f"\033[1mStarlings\033[m see {color_name} as:")
activations = [] activations = []
for color,levels in raw_activations.items(): for color,levels in raw_activations.items():
k = sum(levels)/sum(sum(l) for l in raw_activations.values()) k = sum(levels)/sum(sum(l) for l in raw_activations.values())
activations.append(k) activations.append(k)
if verbose: if verbose:
print(f"{ANSI_COLORS[color]}{color}: \033[10G {k:%}\033[m") print(f"{ANSI_COLORS[color]}{color}: \033[10G {k:%} \033[30G{bar(k, 30)}\033[m")
if verbose: if verbose:
print("") print("")
vec = np.array(activations) vec = np.array(activations)
return vec / np.linalg.norm(vec) return vec / np.linalg.norm(vec)
starling_activations("violet", np.array([380]), verbose=True) starling_activations("\033[38;5;177mviolet (384nm)\033[m", np.array([384]), verbose=True)
starling_purple = starling_activations("purple", np.array([623, 455]), verbose=True) starling_purple = starling_activations(colored_purple, np.array([630, 465]), verbose=True)
print("\nThey look completely differe to a starling!") print("\nThey look completely differe to a starling!")
@ -106,68 +122,23 @@ section_break()
print("...But what pure wavelength looks like purple?") print("...But what pure wavelength looks like purple?")
def wavelength_to_rgb(wavelength, gamma=0.8):
'''
This converts a given wavelength of light to an
approximate RGB color value. The wavelength must be given
in nanometers in the range from 380 nm through 750 nm
(789 THz through 400 THz).
Based on code by Dan Bruton
http://www.physics.sfasu.edu/astro/color/spectra.html
'''
wavelength = float(wavelength)
if wavelength >= 380 and wavelength <= 440:
attenuation = 0.3 + 0.7 * (wavelength - 380) / (440 - 380)
R = ((-(wavelength - 440) / (440 - 380)) * attenuation) ** gamma
G = 0.0
B = (1.0 * attenuation) ** gamma
elif wavelength >= 440 and wavelength <= 490:
R = 0.0
G = ((wavelength - 440) / (490 - 440)) ** gamma
B = 1.0
elif wavelength >= 490 and wavelength <= 510:
R = 0.0
G = 1.0
B = (-(wavelength - 510) / (510 - 490)) ** gamma
elif wavelength >= 510 and wavelength <= 580:
R = ((wavelength - 510) / (580 - 510)) ** gamma
G = 1.0
B = 0.0
elif wavelength >= 580 and wavelength <= 645:
R = 1.0
G = (-(wavelength - 645) / (645 - 580)) ** gamma
B = 0.0
elif wavelength >= 645 and wavelength <= 750:
attenuation = 0.3 + 0.7 * (750 - wavelength) / (750 - 645)
R = (1.0 * attenuation) ** gamma
G = 0.0
B = 0.0
else:
R = 0.0
G = 0.0
B = 0.0
R *= 255
G *= 255
B *= 255
return (int(R), int(G), int(B))
print("")
closest_wavelength = None closest_wavelength = None
best_dist = None best_dist = None
import time for wavelength in range(100,700,1):
for wavelength in range(100,700,2):
activations = starling_activations("???", np.array([wavelength]), verbose=False) activations = starling_activations("???", np.array([wavelength]), verbose=False)
# dist = np.linalg.norm(starling_purple - activations) # dist = np.linalg.norm(starling_purple - activations)
dist = np.dot(starling_purple, activations) dist = np.dot(starling_purple, activations)
if closest_wavelength is None or dist > best_dist: if closest_wavelength is None or dist > best_dist:
closest_wavelength, best_dist = wavelength, dist closest_wavelength, best_dist = wavelength, dist
r,g,b = wavelength_to_rgb(wavelength)
#print(f"\033[48;2;{r};{g};{b}m Scanning: {closest_wavelength}nm... \033[m dist = {dist}", end="\033[K\n", flush=True) #print(f"\033[48;2;{r};{g};{b}m Scanning: {closest_wavelength}nm... \033[m dist = {dist}", end="\033[K\n", flush=True)
section_break() section_break()
r,g,b = wavelength_to_rgb(closest_wavelength) color = wavelength_to_ansi(closest_wavelength)
print(f"\033[48;2;{r};{g};{b}m WINNER: {closest_wavelength}nm! (blue) \033[m\n\n") print(f"{color}\033[30m WINNER: {closest_wavelength}nm! (blue) \033[m\n\n")
starling_activations(f"{color}blue ({closest_wavelength}nm)\033[m", np.array([closest_wavelength]), verbose=True)
print(f"Which looks more like {colored_purple} than any other pure wavelength!")
# import subprocess # import subprocess

Binary file not shown.

Before

Width:  |  Height:  |  Size: 108 KiB

After

Width:  |  Height:  |  Size: 107 KiB